IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v85y2017i3d10.1007_s11069-016-2658-5.html
   My bibliography  Save this article

Large eddy simulation of extreme hydrodynamic forces on structures with mitigation walls using OpenFOAM

Author

Listed:
  • Samieh Sarjamee

    (University of Ottawa)

  • Ioan Nistor

    (University of Ottawa)

  • Abdolmajid Mohammadian

    (University of Ottawa)

Abstract

The objective of this study is to evaluate the performance of a large eddy simulation (LES) numerical model to assess the influence of mitigation walls with various cross sections on the tsunami-induced loading exerted on a freestanding structure. The validation of the model was performed using laboratory experiment results previously conducted by the second author. The employed experiments simulated a tsunami-like bore at two different impoundment depths, including 55 and 85 cm. The results showed that the one-equation subgrid-scale energy transport LES approach performs better than RANS models such as k-ε, k-ω and LRR and can accurately reproduce experimental data obtained for a wide range of experimental conditions.

Suggested Citation

  • Samieh Sarjamee & Ioan Nistor & Abdolmajid Mohammadian, 2017. "Large eddy simulation of extreme hydrodynamic forces on structures with mitigation walls using OpenFOAM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1689-1707, February.
  • Handle: RePEc:spr:nathaz:v:85:y:2017:i:3:d:10.1007_s11069-016-2658-5
    DOI: 10.1007/s11069-016-2658-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2658-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2658-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Huang & Chongqiang Zhu, 2015. "Numerical analysis of tsunami–structure interaction using a modified MPS method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2847-2862, February.
    2. Huaxing Liu & Jing Li & Songdong Shao & Soon Tan, 2015. "SPH modeling of tidal bore scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1247-1270, January.
    3. Steven Douglas & Ioan Nistor, 2015. "On the effect of bed condition on the development of tsunami-induced loading on structures using OpenFOAM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1335-1356, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bünning, Felix & Sangi, Roozbeh & Müller, Dirk, 2017. "A Modelica library for the agent-based control of building energy systems," Applied Energy, Elsevier, vol. 193(C), pages 52-59.
    2. Linnea Sjökvist & Malin Göteman, 2017. "Peak Forces on Wave Energy Linear Generators in Tsunami and Extreme Waves," Energies, MDPI, vol. 10(9), pages 1-19, September.
    3. Sjökvist, Linnea & Göteman, Malin, 2019. "Peak forces on a point absorbing wave energy converter impacted by tsunami waves," Renewable Energy, Elsevier, vol. 133(C), pages 1024-1033.
    4. Samieh Sarjamee & Ioan Nistor & Abdolmajid Mohammadian, 2017. "Numerical investigation of the influence of extreme hydrodynamic forces on the geometry of structures using OpenFOAM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 213-235, May.
    5. Nora Asadollahi & Ioan Nistor & Abdolmajid Mohammadian, 2019. "Numerical investigation of tsunami bore effects on structures, part II: effects of bed condition on loading onto circular structures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 331-351, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:85:y:2017:i:3:d:10.1007_s11069-016-2658-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.