IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v84y2016i3d10.1007_s11069-016-2511-x.html
   My bibliography  Save this article

Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and future threats

Author

Listed:
  • S. K. Allen

    (University of Zurich)

  • A. Linsbauer

    (University of Zurich
    University of Fribourg)

  • S. S. Randhawa

    (State Council for Science, Technology and Environment)

  • C. Huggel

    (University of Zurich)

  • P. Rana

    (State Council for Science, Technology and Environment)

  • A. Kumari

    (State Council for Science, Technology and Environment)

Abstract

Glacial lake outburst floods (GLOFs) are a serious and potentially increasing threat to livelihoods and infrastructure in most high-mountain regions of the world. Here, we integrate modelling approaches that capture both current and future potential for GLOF triggering, quantification of affected downstream areas, and assessment of the underlying societal vulnerability to such climate-related disasters, to implement a first-order assessment of GLOF risk across the Himalayan state of Himachal Pradesh (HP), Northern India. The assessment thereby considers both current glacial lakes and modelled future lakes that are expected to form as glaciers retreat. Current hazard, vulnerability, and exposure indices are combined to reveal several risk ‘hotspots’, illustrating that significant GLOF risk may in some instances occur far downstream from the glaciated headwaters where the threats originate. In particular, trans-national GLOFs originating in the upper Satluj River Basin (China) are a threat to downstream areas of eastern HP. For the future deglaciated scenario, a significant increase in GLOF hazard levels is projected across most administrative units, as lakes expand or form closer towards steep headwalls from which impacts of falling ice and rock may trigger outburst events. For example, in the central area of Kullu, a 7-fold increase in the probability of GLOF triggering and a 3-fold increase in the downstream area affected by potential GLOF paths can be anticipated, leading to an overall increase in the assigned GLOF hazard level from ‘high’ to ‘very high’. In such instances, strengthening resilience and capacities to reduce the current GLOF risk will provide an important first step towards adapting to future challenges.

Suggested Citation

  • S. K. Allen & A. Linsbauer & S. S. Randhawa & C. Huggel & P. Rana & A. Kumari, 2016. "Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and future threats," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1741-1763, December.
  • Handle: RePEc:spr:nathaz:v:84:y:2016:i:3:d:10.1007_s11069-016-2511-x
    DOI: 10.1007/s11069-016-2511-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2511-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2511-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Narendra Raj Khanal & Pradeep Kumar Mool & Arun Bhakta Shrestha & Golam Rasul & Pawan Kumar Ghimire & Rajendra Bahadur Shrestha & Sharad Prasad Joshi, 2015. "A comprehensive approach and methods for glacial lake outburst flood risk assessment, with examples from Nepal and the transboundary area," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(2), pages 219-237, June.
    2. Robin McKillop & John Clague, 2007. "A procedure for making objective preliminary assessments of outburst flood hazard from moraine-dammed lakes in southwestern British Columbia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 131-157, April.
    3. Vikram Gupta & M. Sah, 2008. "Impact of the Trans-Himalayan Landslide Lake Outburst Flood (LLOF) in the Satluj catchment, Himachal Pradesh, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(3), pages 379-390, June.
    4. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    5. Mark Carey & Christian Huggel & Jeffrey Bury & César Portocarrero & Wilfried Haeberli, 2012. "An integrated socio-environmental framework for glacier hazard management and climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru," Climatic Change, Springer, vol. 112(3), pages 733-767, June.
    6. Tobias Bolch & Juliane Peters & Alexandr Yegorov & Biswajeet Pradhan & Manfred Buchroithner & Victor Blagoveshchensky, 2011. "Identification of potentially dangerous glacial lakes in the northern Tien Shan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1691-1714, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilfried Haeberli & Michael Buetler & Christian Huggel & Therese Lehmann Friedli & Yvonne Schaub & Anton J. Schleiss, 2016. "New lakes in deglaciating high-mountain regions – opportunities and risks," Climatic Change, Springer, vol. 139(2), pages 201-214, November.
    2. R. Rajesh & Chandrasekharan Rajendran, 2019. "Grey- and rough-set-based seasonal disaster predictions: an analysis of flood data in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 395-435, May.
    3. Cook, David & Malinauskaite, Laura & Davíðsdóttir, Brynhildur & Ögmundardóttir, Helga, 2021. "Co-production processes underpinning the ecosystem services of glaciers and adaptive management in the era of climate change," Ecosystem Services, Elsevier, vol. 50(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonam Futi Sherpa & Milan Shrestha & Hallie Eakin & Christopher G. Boone, 2019. "Cryospheric hazards and risk perceptions in the Sagarmatha (Mt. Everest) National Park and Buffer Zone, Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 607-626, March.
    2. Abhishek Banerjee & Shichang Kang & Wanqin Guo & Michael E. Meadows & Weicai Wang & Dhritiraj Sengupta & Taigang Zhang, 2024. "Glacier retreat and lake outburst floods in the central Himalayan region from 2000 to 2022," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(6), pages 5485-5508, April.
    3. Sally Rangecroft & Andrew J. Suggitt & Karen Anderson & Stephan Harrison, 2016. "Future climate warming and changes to mountain permafrost in the Bolivian Andes," Climatic Change, Springer, vol. 137(1), pages 231-243, July.
    4. R. K. Sharma & Pranay Pradhan & N. P. Sharma & D. G. Shrestha, 2018. "Remote sensing and in situ-based assessment of rapidly growing South Lhonak glacial lake in eastern Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 393-409, August.
    5. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    6. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    7. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    8. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    9. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    10. Kamaldeen Mohammed & Evans Batung & Moses Kansanga & Hanson Nyantakyi-Frimpong & Isaac Luginaah, 2021. "Livelihood diversification strategies and resilience to climate change in semi-arid northern Ghana," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    11. R. Bryson Touchstone & Kathleen Sherman-Morris, 2016. "Vulnerability to prolonged cold: a case study of the Zeravshan Valley of Tajikistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1279-1300, September.
    12. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    13. Brian Petersen & Diana Stuart, 2014. "Explanations of a Changing Landscape: A Critical Examination of the British Columbia Bark Beetle Epidemic," Environment and Planning A, , vol. 46(3), pages 598-613, March.
    14. Yi Gu & Jinyu Sun & Jianming Cai & Yanwen Xie & Jiahao Guo, 2024. "Urban Planning Perspective on Food Resilience Assessment and Practice in the Zhengzhou Metropolitan Area, China," Land, MDPI, vol. 13(10), pages 1-27, October.
    15. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    16. Cailin Wang & Jidong Wu & Xin He & Mengqi Ye & Wenhui Liu & Rumei Tang, 2018. "Emerging Trends and New Developments in Disaster Research after the 2008 Wenchuan Earthquake," IJERPH, MDPI, vol. 16(1), pages 1-19, December.
    17. Rio Yonson & Ilan Noy & JC Gaillard, 2018. "The measurement of disaster risk: An example from tropical cyclones in the Philippines," Review of Development Economics, Wiley Blackwell, vol. 22(2), pages 736-765, May.
    18. Yi Ge & Guangfei Yang & Yi Chen & Wen Dou, 2019. "Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    19. Muhammad Suhail Rizwan & Asifa Obaid & Dawood Ashraf, 2017. "The Impact of Corporate Social Responsibility on Default Risk: Empirical evidence from US Firms," Business & Economic Review, Institute of Management Sciences, Peshawar, Pakistan, vol. 9(3), pages 36-70, September.
    20. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:84:y:2016:i:3:d:10.1007_s11069-016-2511-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.