IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v82y2016i2d10.1007_s11069-016-2235-y.html
   My bibliography  Save this article

Trajectories, drivers, and probabilities of land cover change in a disturbed forested watershed in eastern Taiwan

Author

Listed:
  • Chun-Kuo Yeh

    (National Taiwan Normal University)

  • Shyue-Cherng Liaw

    (National Taiwan Normal University)

Abstract

Understanding the trajectories, drivers, and probabilities of land cover change can provide essential information for forested watershed planning and sustainable management. This paper demonstrates that the Taimali watershed in eastern Taiwan underwent a dramatic decrease in forest cover under the influences of frequent earthquakes and typhoons during 2005–2011. To grasp the dynamics of land cover change, this study applied a combined land-change analysis approach using trajectory analysis and logistic regression. The results of trajectory analysis indicate that three change trajectories, covering 75.65 % of the total changed area, were considered the major trends of alterations, including the trajectories of Forest-Landslide, Forest-Channel, and vegetation recovery. Based on the causes of land conversion, most land transformation resulted from natural causes. Therefore, natural forces play a pivotal role in land cover change in the Taimali watershed. The results of logistic regression analysis show that lithology is the most important spatial determinant for occurrence probability of three change trajectories, followed by aspect and slope. Three maps of occurrence probability of the change trajectories were produced using regression coefficients. With the validation of the relative change intensity index, the results reveal that the observed change trajectories considerably coincided with the zones that had higher probabilities of change and covered a small area. Thus, three spatial statistical models are helpful tools for projecting the occurrence probabilities of the change trajectories.

Suggested Citation

  • Chun-Kuo Yeh & Shyue-Cherng Liaw, 2016. "Trajectories, drivers, and probabilities of land cover change in a disturbed forested watershed in eastern Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1099-1122, June.
  • Handle: RePEc:spr:nathaz:v:82:y:2016:i:2:d:10.1007_s11069-016-2235-y
    DOI: 10.1007/s11069-016-2235-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2235-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2235-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dieu Bui & Owe Lofman & Inge Revhaug & Oystein Dick, 2011. "Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1413-1444, December.
    2. Chang-Jo Chung & Andrea Fabbri, 2003. "Validation of Spatial Prediction Models for Landslide Hazard Mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 451-472, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    2. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    3. Halil Akinci & Mustafa Zeybek, 2021. "Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1515-1543, September.
    4. L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.
    5. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    6. Quang-Khanh Nguyen & Dieu Tien Bui & Nhat-Duc Hoang & Phan Trong Trinh & Viet-Ha Nguyen & Isık Yilmaz, 2017. "A Novel Hybrid Approach Based on Instance Based Learning Classifier and Rotation Forest Ensemble for Spatial Prediction of Rainfall-Induced Shallow Landslides using GIS," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
    7. Yumin Tan & Dong Guo & Bo Xu, 2015. "A geospatial information quantity model for regional landslide risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1385-1398, November.
    8. D. Costanzo & C. Cappadonia & C. Conoscenti & E. Rotigliano, 2012. "Exporting a Google Earth ™ aided earth-flow susceptibility model: a test in central Sicily," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 103-114, March.
    9. E. Rotigliano & C. Cappadonia & C. Conoscenti & D. Costanzo & V. Agnesi, 2012. "Slope units-based flow susceptibility model: using validation tests to select controlling factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 143-153, March.
    10. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    11. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    12. Xiaoqing Zhao & Junwei Pu & Xingyou Wang & Junxu Chen & Liang Emlyn Yang & Zexian Gu, 2018. "Land-Use Spatio-Temporal Change and Its Driving Factors in an Artificial Forest Area in Southwest China," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    13. Kamila Pawluszek & Andrzej Borkowski, 2017. "Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 919-952, March.
    14. Alejandro Gonzalez-Ollauri & Slobodan B. Mickovski, 2021. "A Simple GIS-Based Tool for the Detection of Landslide-Prone Zones on a Coastal Slope in Scotland," Land, MDPI, vol. 10(7), pages 1-15, June.
    15. Michele Marconi & Beatrice Gatto & Michele Magni & Fausto Marincioni, 2016. "A rapid method for flood susceptibility mapping in two districts of Phatthalung Province (Thailand): present and projected conditions for 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 329-346, March.
    16. Massimo Conforti & Pietro Aucelli & Gaetano Robustelli & Fabio Scarciglia, 2011. "Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 881-898, March.
    17. Nikolaos Tavoularis & George Papathanassiou & Athanassios Ganas & Panagiotis Argyrakis, 2021. "Development of the Landslide Susceptibility Map of Attica Region, Greece, Based on the Method of Rock Engineering System," Land, MDPI, vol. 10(2), pages 1-31, February.
    18. Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
    19. Massimo Conforti & Gaetano Robustelli & Francesco Muto & Salvatore Critelli, 2012. "Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 127-141, March.
    20. Jörg Grunert & Sigrid Hess, 2010. "The Upper Middle Rhine Valley as a risk area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(3), pages 577-597, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:82:y:2016:i:2:d:10.1007_s11069-016-2235-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.