IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v80y2016i3d10.1007_s11069-015-2052-8.html
   My bibliography  Save this article

Estimating tsunami run-up

Author

Listed:
  • G. M. Smart

    (National Institute for Water and Atmospheric Research Ltd (NIWA))

  • K. H. M. Crowley

    (National Institute for Water and Atmospheric Research Ltd (NIWA))

  • E. M. Lane

    (National Institute for Water and Atmospheric Research Ltd (NIWA))

Abstract

Tsunami risk reduction activities rely on a sound knowledge of the hazard characteristics. Our understanding of these characteristics is derived from empirical measurements, numerical models or established rules. Conventional methods used to delineate areas vulnerable to tsunami inundation are often calculated from estimated maximum wave height at the coast and “rules-of-thumb”. Applying such rules may give unreliable results for decision-makers. Using basic hydraulic principles and assumptions, this paper improves on the existing rules by developing and testing new equations for predicting tsunami maximum depth profiles and inundation distances. The proposed equations require knowledge of shoreline wave-crest level, the onshore ground profile and an index for onshore roughness (a ratio of distance between protrusions to a local friction factor). As a tsunami wave moves inland, the equations demonstrate that there will usually be an exponential decline in peak water depth. The equations also confirm that a smaller spacing between onshore roughness elements, such as trees or houses, will give a steeper decline in peak depth due to increased friction as a wave moves inland. Furthermore, where ground level is rising faster than friction head is being lost, it is predicted that the water level of a tsunami will rise above the shoreline wave-crest level. The ground slope at which run-up starts to exceed shoreline wave-crest level can be predicted from the shoreline wave-crest level and roughness spacing. Results predicted by the new equations are verified by comparison with tsunami run-up measurements made in Samoa and Java.

Suggested Citation

  • G. M. Smart & K. H. M. Crowley & E. M. Lane, 2016. "Estimating tsunami run-up," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1933-1947, February.
  • Handle: RePEc:spr:nathaz:v:80:y:2016:i:3:d:10.1007_s11069-015-2052-8
    DOI: 10.1007/s11069-015-2052-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-015-2052-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-015-2052-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hiroaki Sato & Hitoshi Murakami & Yasunori Kozuki & Naoaki Yamamoto, 2003. "Study on a Simplified Method of Tsunami Risk Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(3), pages 325-340, July.
    2. Roelof Schuiling & Richard Cathcart & Viorel Badescu & Dragos Isvoranu & Efim Pelinovsky, 2007. "Asteroid impact in the Black Sea. Death by drowning or asphyxiation?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(2), pages 327-338, February.
    3. Stuart Fraser & William Power & Xiaoming Wang & Laura Wallace & Christof Mueller & David Johnston, 2014. "Tsunami inundation in Napier, New Zealand, due to local earthquake sources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 415-445, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwei Jiang & Jingshan Yu, 2022. "Impact of rainstorm patterns on the urban flood process superimposed by flash floods and urban waterlogging based on a coupled hydrologic–hydraulic model: a case study in a coastal mountainous river b," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 301-326, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Smart & K. Crowley & E. Lane, 2016. "Estimating tsunami run-up," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1933-1947, February.
    2. Jin‐Feng Wang & Lian‐Fa Li, 2008. "Improving Tsunami Warning Systems with Remote Sensing and Geographical Information System Input," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1653-1668, December.
    3. Anita Grezio & Warner Marzocchi & Laura Sandri & Paolo Gasparini, 2010. "A Bayesian procedure for Probabilistic Tsunami Hazard Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(1), pages 159-174, April.
    4. Kevin D. Henry & Nathan J. Wood & Tim G. Frazier, 2017. "Influence of road network and population demand assumptions in evacuation modeling for distant tsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1665-1687, February.
    5. Azin Fathianpour & Suzanne Wilkinson & Mostafa Babaeian Jelodar & Barry Evans, 2023. "Reducing the vulnerability of tourists to tsunami: challenges for decision-makers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1315-1339, September.
    6. Timothy Titus & D. Robertson & J. B. Sankey & L. Mastin & F. Rengers, 2023. "A review of common natural disasters as analogs for asteroid impact effects and cascading hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1355-1402, March.
    7. Caterina Negulescu & Abed Benaïchouche & Anne Lemoine & Sylvestre Roy & Rodrigo Pedreros, 2020. "Adjustability of exposed elements by updating their capacity for resistance after a damaging event: application to an earthquake–tsunami cascade scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 753-793, October.
    8. Eric Geist & Tom Parsons, 2014. "Undersampling power-law size distributions: effect on the assessment of extreme natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 565-595, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:80:y:2016:i:3:d:10.1007_s11069-015-2052-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.