IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v29y2003i3p325-340.html
   My bibliography  Save this article

Study on a Simplified Method of Tsunami Risk Assessment

Author

Listed:
  • Hiroaki Sato
  • Hitoshi Murakami
  • Yasunori Kozuki
  • Naoaki Yamamoto

Abstract

For the testing of the effect on the tsunami prevention facilities, a simplified methodfor tsunami risk assessment was suggested without wave run-up analysis. This methodis proposed using calculated offshore tsunami waveform and field reconnaissance suchas the seawall height, time necessary for residents' evacuation and tsunami warninginsurance. Then, two normalized values are evaluated; one is the ratio of calculatedmaximum tsunami height to seawall height, the other is the ratio of time betweentsunami over-topping and evacuation completion to total time required for evacuation.These two values are used to qualitatively estimate the safety of residents and the effectof tsunami prevention facilities, eliminating the necessity to compute complicatedtsunami run-up onshore. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • Hiroaki Sato & Hitoshi Murakami & Yasunori Kozuki & Naoaki Yamamoto, 2003. "Study on a Simplified Method of Tsunami Risk Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(3), pages 325-340, July.
  • Handle: RePEc:spr:nathaz:v:29:y:2003:i:3:p:325-340
    DOI: 10.1023/A:1024732204299
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1024732204299
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1024732204299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin‐Feng Wang & Lian‐Fa Li, 2008. "Improving Tsunami Warning Systems with Remote Sensing and Geographical Information System Input," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1653-1668, December.
    2. G. Smart & K. Crowley & E. Lane, 2016. "Estimating tsunami run-up," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1933-1947, February.
    3. Anita Grezio & Warner Marzocchi & Laura Sandri & Paolo Gasparini, 2010. "A Bayesian procedure for Probabilistic Tsunami Hazard Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(1), pages 159-174, April.
    4. Eric Geist & Tom Parsons, 2014. "Undersampling power-law size distributions: effect on the assessment of extreme natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 565-595, June.
    5. G. M. Smart & K. H. M. Crowley & E. M. Lane, 2016. "Estimating tsunami run-up," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1933-1947, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:29:y:2003:i:3:p:325-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.