IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v71y2014i3p1821-1846.html
   My bibliography  Save this article

Evaluation of swimmer-based rip current escape strategies

Author

Listed:
  • R. McCarroll
  • Robert Brander
  • Jamie MacMahan
  • Ian Turner
  • Ad Reniers
  • Jenna Brown
  • Anthony Bradstreet
  • Shauna Sherker

Abstract

Rip currents are the primary hazard on surf beaches, and early studies described them as fast, shore-normal flows that extended seaward of the surf zone. Based on this traditional view, commonly promoted safety advice was to escape a rip current by swimming parallel to the beach. However, recent studies have shown dominant rip current re-circulation within the surf zone and have endorsed floating as an appropriate escape strategy. Here, a first quantitative assessment of the efficacy of various rip current escape strategies, with a focus on the underlying physical processes, is presented. A field study was conducted at Shelly Beach, NSW, Australia, measuring three rip currents (two open beaches, one topographic) over 3 days in varying wave conditions. Floating was found to be a longer duration, more variable escape strategy ( $$ \overline{t} $$ t ¯ = 3.8 min, σ = 2.4 min), than swimming parallel ( $$ \overline{t} $$ t ¯ = 2.2 min, σ = 1.0 min). Neither of the scenarios is 100 % foolproof, and both fail in some scenarios, making simplified safety recommendations difficult. Swim parallel failures are related to swimming against the alongshore current of the rip circulation. Float failures related to surf zone exits, with the highest exit rate occurring in the topographic rip. Float failures also occurred due to multiple re-circulations without the person attaining safe footing on the bar. The variable spatial and temporal behaviour of rip currents suggests that a single escape strategy safety message is inappropriate. Instead, a combined approach and scenario-specific safety advice should be considered by beach safety practitioners to promote to the public. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • R. McCarroll & Robert Brander & Jamie MacMahan & Ian Turner & Ad Reniers & Jenna Brown & Anthony Bradstreet & Shauna Sherker, 2014. "Evaluation of swimmer-based rip current escape strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1821-1846, April.
  • Handle: RePEc:spr:nathaz:v:71:y:2014:i:3:p:1821-1846
    DOI: 10.1007/s11069-013-0979-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0979-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0979-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicole Caldwell & Chris Houser & Klaus Meyer-Arendt, 2013. "Ability of beach users to identify rip currents at Pensacola Beach, Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 1041-1056, September.
    2. M. Miloshis & W. Stephenson, 2011. "Rip current escape strategies: lessons for swimmers and coastal rescue authorities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 823-832, November.
    3. Chris Houser & Gemma Barrett & Daniel Labude, 2011. "Alongshore variation in the rip current hazard at Pensacola Beach, Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 501-523, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baris Barlas & Serdar Beji, 2016. "Rip current fatalities on the Black Sea beaches of Istanbul and effects of cultural aspects in shaping the incidents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 811-821, January.
    2. Matthew B. Doelp & Jack A. Puleo & Nathaniel G. Plant, 2019. "Predicting surf zone injuries along the Delaware coast using a Bayesian network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 379-401, September.
    3. Sabri Alkan & Uğur Karadurmuş, 2023. "Risk assessment of natural and other hazard factors on drowning incidents in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2459-2475, September.
    4. Daniel M. Hanes, 2016. "Human instability related to drowning risk in surf zones for novice beachgoers or weak swimmers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 761-766, August.
    5. Archie Withers & Sergio Maldonado, 2021. "On the swimming strategies to escape a rip current: a mathematical approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1449-1467, September.
    6. Peter Kamstra & Brian Cook & David M. Kennedy & Barbara Brighton, 2018. "Treating risk as relational on shore platforms and implications for public safety on microtidal rocky coasts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1299-1316, April.
    7. Jack A. Puleo & Katie Hutschenreuter & Paul Cowan & Wendy Carey & Michelle Arford-Granholm & Kimberly K. McKenna, 2016. "Delaware surf zone injuries and associated environmental conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 845-867, March.
    8. Jack Puleo & Katie Hutschenreuter & Paul Cowan & Wendy Carey & Michelle Arford-Granholm & Kimberly McKenna, 2016. "Delaware surf zone injuries and associated environmental conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 845-867, March.
    9. Bruno Castelle & Rob Brander & Eric Tellier & Bruno Simonnet & Tim Scott & Jak McCarroll & Jean-Michel Campagne & Thibault Cavailhes & Pierre Lechevrel, 2018. "Surf zone hazards and injuries on beaches in SW France," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1317-1335, September.
    10. Warton, Nicola M. & Brander, Robert W., 2017. "Improving tourist beach safety awareness: The benefits of watching Bondi Rescue," Tourism Management, Elsevier, vol. 63(C), pages 187-200.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Van Leeuwen & R. McCarroll & Robert Brander & Ian Turner & Hannah Power & Anthony Bradstreet, 2016. "Examining rip current escape strategies in non-traditional beach morphologies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 145-165, March.
    2. Ben R. Van Leeuwen & R. Jak McCarroll & Robert W. Brander & Ian L. Turner & Hannah E. Power & Anthony J. Bradstreet, 2016. "Examining rip current escape strategies in non-traditional beach morphologies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 145-165, March.
    3. Baris Barlas & Serdar Beji, 2016. "Rip current fatalities on the Black Sea beaches of Istanbul and effects of cultural aspects in shaping the incidents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 811-821, January.
    4. Christian Brannstrom & Sarah Trimble & Anna Santos & Heather Brown & Chris Houser, 2014. "Perception of the rip current hazard on Galveston Island and North Padre Island, Texas, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1123-1138, June.
    5. Bruno Castelle & R. Jak McCarroll & Robert W. Brander & Timothy Scott & Benjamin Dubarbier, 2016. "Modelling the alongshore variability of optimum rip current escape strategies on a multiple rip-channelled beach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 663-686, March.
    6. Sabri Alkan & Uğur Karadurmuş, 2023. "Risk assessment of natural and other hazard factors on drowning incidents in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2459-2475, September.
    7. A. Dana Ménard & Chris Houser & Robert W. Brander & Sarah Trimble & Alexandra Scaman, 2018. "The psychology of beach users: importance of confirmation bias, action, and intention to improving rip current safety," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 953-973, November.
    8. Bruno Castelle & R. McCarroll & Robert Brander & Timothy Scott & Benjamin Dubarbier, 2016. "Modelling the alongshore variability of optimum rip current escape strategies on a multiple rip-channelled beach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 663-686, March.
    9. Chris Houser & Trey Murphy & Daniel Labude, 2015. "Alongshore correspondence of beach users and rip channels at Pensacola Beach, Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2175-2183, September.
    10. Shintaro Endo & Ryo Shimada & Toshinori Ishikawa & Tsutomu Komine, 2022. "Can the visualization of rip currents prevent drowning accidents? Consideration of the effect of optimism bias," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2017-2033, February.
    11. Anna Boqué Ciurana & Melisa Ménendez & María Suárez Bilbao & Enric Aguilar, 2022. "Exploring the Climatic Potential of Somo’s Surf Spot for Tourist Destination Management," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    12. Nur Adawiyah Mohammed Isa & Muhammad Zahir Ramli & Siti Fairuz Che Othman & Muhammad Zubir Yusof, 2021. "A preliminary studies to assess public knowledge of beach safety in east coast Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 873-887, May.
    13. Isabel Arozarena & Chris Houser & Alejandro Echeverria & Christian Brannstrom, 2015. "The rip current hazard in Costa Rica," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 753-768, June.
    14. Warton, Nicola M. & Brander, Robert W., 2017. "Improving tourist beach safety awareness: The benefits of watching Bondi Rescue," Tourism Management, Elsevier, vol. 63(C), pages 187-200.
    15. Muhammad Zubir Yusof & Muhammad Zahir Ramli & Siti Fairuz Che Othman & Yusairah Amani Mohd Aliziyad & Juliana Mohamed & Muhammad Faiz Pa’suya & Abdul Nasir Abdul Ghafar & Waheb A. Jabbar, 2023. "Public understanding of rip current and beach safety at Teluk Cempedak Recreational Beach in Pahang, Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 489-506, January.
    16. Daoheng Zhu & Zhiqiang Li & Pengpeng Hu & Bingfu Wang & Qianxin Su & Gaocong Li, 2023. "Preliminary Investigation and Analysis of Beachgoers’ Awareness of Rip Currents in South China," IJERPH, MDPI, vol. 20(5), pages 1-20, March.
    17. Archie Withers & Sergio Maldonado, 2021. "On the swimming strategies to escape a rip current: a mathematical approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1449-1467, September.
    18. Kathleen M. Fallon & Qing Lai & Stephen P. Leatherman, 2018. "Rip current literacy of beachgoers at Miami Beach, Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 601-621, January.
    19. Xiao Hong & Yao Zhang & Bin Wang & Shuihua Zhou & Shengbin Yu & Juan Zhang, 2021. "Numerical study of rip currents interlaced with multichannel sandbars," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 593-605, August.
    20. Bruno Castelle & Rob Brander & Eric Tellier & Bruno Simonnet & Tim Scott & Jak McCarroll & Jean-Michel Campagne & Thibault Cavailhes & Pierre Lechevrel, 2018. "Surf zone hazards and injuries on beaches in SW France," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1317-1335, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:71:y:2014:i:3:p:1821-1846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.