IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i2p1261-1279.html
   My bibliography  Save this article

Numerical simulation of dynamic mechanisms of the 2008 Wenchuan Ms8.0 earthquake: implications for earthquake prediction

Author

Listed:
  • Shoubiao Zhu

Abstract

The sudden and unexpected Wenchuan earthquake (Ms = 8.0) occurred on the Longmen Shan Fault, causing a large number of casualties and huge property loss. Almost no definite precursors were reported prior to this event by Chinese scientists, who made a first successful prediction of the 1975 Haicheng earthquake (M = 7.3) in China. Does the unsuccessful prediction of the Wenchuan earthquake mean earthquake prediction is inherently impossible? In order to answer this question, the paper simulated inter- and co-seismic deformation, and recurrence of strong earthquakes associated with the Longmen Shan listric thrust fault by means of viscoelastic finite element method. The modeling results show that the computed interseismic strain accumulation in the lower crust beneath the Eastern Tibet is much faster than that in the other regions. In particular, the elastic strain energy density rate accumulates very rapid in and around the Longmen Shan fault in the depth above ~25 km that may explain why the great Wenchuan earthquake occurs in the region of such a slow surface deformation rate. The modeled coseismic displacements around the fault are consistent with surface rupture, aftershock distribution, and GPS measurement. Also, the model displays the slip history on the Longmen Shan fault, implying that the average earthquake recurrence interval on the Longmen Shan fault is very long, 3,300 years, which is in good agreement with the observed by paleoseismological investigations and estimates by other methods. Moreover, the model results indicate that the future earthquake could be evaluated based on numerical computation, rather than on precursors or on statistics. Numerical earthquake prediction (NEP) seems to be a promising avenue to a successful prediction, which will play an important part in natural hazard mitigation. NEP is difficult but possible, which needs well supporting. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Shoubiao Zhu, 2013. "Numerical simulation of dynamic mechanisms of the 2008 Wenchuan Ms8.0 earthquake: implications for earthquake prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(2), pages 1261-1279, November.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:2:p:1261-1279
    DOI: 10.1007/s11069-013-0629-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0629-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0629-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher H. Scholz, 1998. "Earthquakes and friction laws," Nature, Nature, vol. 391(6662), pages 37-42, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Sivakumar & Snehasish Ghosh, 2017. "Determination of threshold energy for the development of seismic energy anomaly model through integrated geotectonic and geoinformatics approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 711-740, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyu Sun & Matej Pec, 2021. "Nanometric flow and earthquake instability," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Elisenda Bakker & John Kaszuba & Sabine den Hartog & Suzanne Hangx, 2019. "Chemo‐mechanical behavior of clay‐rich fault gouges affected by CO2‐brine‐rock interactions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(1), pages 19-36, February.
    3. Stuart Fraser & William Power & Xiaoming Wang & Laura Wallace & Christof Mueller & David Johnston, 2014. "Tsunami inundation in Napier, New Zealand, due to local earthquake sources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 415-445, January.
    4. Sandro Andrés & David Santillán & Juan Carlos Mosquera & Luis Cueto-Felgueroso, 2019. "Thermo-Poroelastic Analysis of Induced Seismicity at the Basel Enhanced Geothermal System," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    5. Nkomom, Théodule Nkoa & Okaly, Joseph Brizar & Mvogo, Alain, 2021. "Dynamics of modulated waves and localized energy in a Burridge and Knopoff model of earthquake with velocity-dependant and hydrodynamics friction forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    6. D.Sornette & J.V. Andersen & A. Helmstetter & S.Gluzman & J.R.Grasso & V. Pisarenko, 2003. "Slider-Block Friction Model for Landslides: Application to Vaiont and Laclapière Landslides," THEMA Working Papers 2003-33, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    7. Pelap, F.B. & Kagho, L.Y. & Fogang, C.F., 2016. "Chaotic behavior of earthquakes induced by a nonlinear magma up flow," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 71-83.
    8. Nkomom, Théodule Nkoa & Ndzana, Fabien II & Okaly, Joseph Brizar & Mvogo, Alain, 2021. "Dynamics of nonlinear waves in a Burridge and Knopoff model for earthquake with long-range interactions, velocity-dependent and hydrodynamics friction forces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    9. Songlin Shi & Meng Wang & Yonatan Poles & Jay Fineberg, 2023. "How frictional slip evolves," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. R. Tiwari & Ashutosh Chamoli, 2015. "Is tidal forcing critical to trigger large Sumatra earthquakes?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 65-74, May.
    11. Bahman Bohloli & Magnus Soldal & Halvard Smith & Elin Skurtveit & Jung Chan Choi & Guillaume Sauvin, 2020. "Frictional Properties and Seismogenic Potential of Caprock Shales," Energies, MDPI, vol. 13(23), pages 1-19, November.
    12. Cunpeng Du & Haitao Yin & Shengwen Yu & Le Yang & Yuan Jia, 2023. "Effects of the 2011 Mw 9.0 Tohoku-Oki Earthquake on the Locking Characteristics and Seismic Risk of the Yishu Fault Zone in China," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    13. Mahendra Samaroo & Rick Chalaturnyk & Maurice Dusseault & Judy F. Chow & Hans Custers, 2022. "Assessment of the Brittle–Ductile State of Major Injection and Confining Formations in the Alberta Basin," Energies, MDPI, vol. 15(19), pages 1-23, September.
    14. Frédéric Cappa & Yves Guglielmi & Louis Barros, 2022. "Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Gaucher, Emmanuel & Schoenball, Martin & Heidbach, Oliver & Zang, Arno & Fokker, Peter A. & van Wees, Jan-Diederik & Kohl, Thomas, 2015. "Induced seismicity in geothermal reservoirs: A review of forecasting approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1473-1490.
    16. Kostić, Srđan & Vasović, Nebojša & Todorović, Kristina & Franović, Igor, 2018. "Nonlinear dynamics behind the seismic cycle: One-dimensional phenomenological modeling," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 310-316.
    17. Caishan Yan & Hsuan-Yi Chen & Pik-Yin Lai & Penger Tong, 2023. "Statistical laws of stick-slip friction at mesoscale," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Wei Feng & Lu Yao & Chiara Cornelio & Rodrigo Gomila & Shengli Ma & Chaoqun Yang & Luigi Germinario & Claudio Mazzoli & Giulio Di Toro, 2023. "Physical state of water controls friction of gabbro-built faults," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:2:p:1261-1279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.