IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v62y2012i2p691-721.html
   My bibliography  Save this article

Rockfall risk assessment to persons travelling in vehicles along a road: the case study of the Amalfi coastal road (southern Italy)

Author

Listed:
  • Settimio Ferlisi
  • Leonardo Cascini
  • Jordi Corominas
  • Fabio Matano

Abstract

The paper deals with the assessment of rockfall risk to persons travelling in vehicles along the SS163 road, an important transportation corridor supporting a high vehicle traffic within the well-known tourist area of the Amalfi Coast (southern Italy). To this aim, the Rockfall Hazard Rating System (RHRS) and quantitative risk assessment (QRA) procedures, in this latter case for three rockfall risk scenarios, are applied. With reference to a large portion (33.820 out of a total of 50.365 km) of the SS163 road, the obtained QRA results highlight that, although the estimated individual risk to life satisfies the adopted tolerable risk criterion, the computed societal risk cannot be tolerated. Starting from this result, site-specific QRA analyses—carried out with reference to some road sections chosen on the basis of the RHRS results—allow the detection of the SS163 portions where the individual risk to life exceeds the tolerable risk threshold and, then, the recourse to mitigation measures could reveal necessary. In this regard, RHRS and QRA methods can be considered complementary tools in prioritizing the road sections where construction funds can be profitably spent in order to mitigate the rockfall risk with reference to both direct consequences (life loss) and indirect ones (traffic delay and diversions). Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Settimio Ferlisi & Leonardo Cascini & Jordi Corominas & Fabio Matano, 2012. "Rockfall risk assessment to persons travelling in vehicles along a road: the case study of the Amalfi coastal road (southern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 691-721, June.
  • Handle: RePEc:spr:nathaz:v:62:y:2012:i:2:p:691-721
    DOI: 10.1007/s11069-012-0102-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0102-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0102-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Katz & P. Reichenbach & F. Guzzetti, 2011. "Rock fall hazard along the railway corridor to Jerusalem, Israel, in the Soreq and Refaim valleys," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 649-665, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qigen Lin & Ying Wang & Tianxue Liu & Yingqi Zhu & Qi Sui, 2017. "The Vulnerability of People to Landslides: A Case Study on the Relationship between the Casualties and Volume of Landslides in China," IJERPH, MDPI, vol. 14(2), pages 1-12, February.
    2. T. N. Singh & Rajbal Singh & Bhoop Singh & L. K. Sharma & Rajesh Singh & M. K. Ansari, 2016. "Investigations and stability analyses of Malin village landslide of Pune district, Maharashtra, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2019-2030, April.
    3. Gianmarco Vallero & Valerio De Biagi & Monica Barbero & Marta Castelli & Maria Lia Napoli, 2020. "A method to quantitatively assess the vulnerability of masonry structures subjected to rockfalls," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1307-1325, August.
    4. V. Vishal & T. Siddique & Rohan Purohit & Mohit K. Phophliya & S. P. Pradhan, 2017. "Hazard assessment in rockfall-prone Himalayan slopes along National Highway-58, India: rating and simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 487-503, January.
    5. Sajid Ali & Rashid Haider & Wahid Abbas & Muhammad Basharat & Klaus Reicherter, 2021. "Empirical assessment of rockfall and debris flow risk along the Karakoram Highway, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2437-2460, April.
    6. Valerio De Biagi & Maria Lia Napoli & Monica Barbero, 2017. "A quantitative approach for the evaluation of rockfall risk on buildings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1059-1086, September.
    7. Daniele Giordan & Martina Cignetti & Danilo Godone & Davide Bertolo & Marco Paganone, 2021. "Definition of an Operative Methodology for the Management of Rockfalls along with the Road Network," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    8. P. Singh & A. Wasnik & Ashutosh Kainthola & M. Sazid & T. Singh, 2013. "The stability of road cut cliff face along SH-121: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 497-507, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Runqiu Huang & Jianjun Zhao & Nengpan Ju & Guo Li & Min Lee & Yanrong Li, 2013. "Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 1021-1039, September.
    2. T. Levi & A. Salamon & D. Bausch & J. Rozelle & A. Cutrell & S. Hoyland & Y. Hamiel & O. Katz & R. Calvo & Z. Gvirtzman & B. Ackerman & I. Gavrieli, 2018. "Earthquake scenario in a national drill, the case of “Turning Point 6”, 2012, Israel," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 113-132, May.
    3. T. Topal & M. Akin & M. Akin, 2012. "Rockfall hazard analysis for an historical Castle in Kastamonu (Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 255-274, June.
    4. Lukovic Marija & Ziegler Martin & Aaron Jordan & Perras Matthew, 2022. "Rockfall susceptibility and runout in the Valley of the Kings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 451-485, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:62:y:2012:i:2:p:691-721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.