IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i15d10.1007_s11069-025-07482-y.html
   My bibliography  Save this article

Improving deep learning-based flood susceptibility modeling by integrating data balancing technique and dual-input convolutional neural network

Author

Listed:
  • Shadi Maddah

    (Iran University of Science and Technology)

  • Barat Mojaradi

    (Iran University of Science and Technology)

  • Hosein Alizadeh

    (Iran University of Science and Technology)

Abstract

Flood susceptibility maps are fundamental tools for identifying flood-susceptible areas to facilitate planning and resource allocation. This paper examines the capabilities of two types of convolutional neural networks, dual-input convolutional neural networks (DICNN) and single-input convolutional neural networks (SICNN), in flood susceptibility modeling. Hence, radar satellite images from Sentinel-1 were employed to extract flooded areas in the Gorganrood watershed located in Golestan Province, Iran. Furthermore, fifteen predictive factors encompassing altitude, normalized difference moisture index (NDMI), slope, land use, topographic wetness index (TWI), soil texture, lithology, drainage density, normalized difference vegetation index (NDVI), aspect, rainfall, distance from rivers, stream power index (SPI), profile and plan curvature were identified and prepared for the modeling process. This study also used a spatial flood data balancing technique, generative adversarial networks (GAN), to correct imbalanced flood datasets. Moreover, the information gain ratio (IGR) analysis was performed to identify the effectiveness of each predictive factor. The area under the receiver operating characteristic curve (AUC) was analyzed to validate the developed models. The validation outcomes demonstrated that the DICNN model outperforms the SICNN model in both training (AUCtraining=0.974; AUCtraining=0.966) and testing (AUCtesting=0.954; AUCtesting=0.933), respectively. Results also showed that about 15.17% of the land, mostly concentrated in downstream areas, exhibits high and very high levels of susceptibility, with altitude being the most influential factor in flood occurrence within the study area.

Suggested Citation

  • Shadi Maddah & Barat Mojaradi & Hosein Alizadeh, 2025. "Improving deep learning-based flood susceptibility modeling by integrating data balancing technique and dual-input convolutional neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(15), pages 17555-17577, August.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:15:d:10.1007_s11069-025-07482-y
    DOI: 10.1007/s11069-025-07482-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07482-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07482-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Quoc Bao Pham & Sk Ajim Ali & Elzbieta Bielecka & Beata Calka & Agata Orych & Farhana Parvin & Ewa Łupikasza, 2022. "Flood vulnerability and buildings’ flood exposure assessment in a densely urbanised city: comparative analysis of three scenarios using a neural network approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1043-1081, September.
    2. Saeid Janizadeh & Mohammadtaghi Avand & Abolfazl Jaafari & Tran Van Phong & Mahmoud Bayat & Ebrahim Ahmadisharaf & Indra Prakash & Binh Thai Pham & Saro Lee, 2019. "Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, Iran," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    3. Abdul Baser Qasimi & Vahid Isazade & Ronny Berndtsson, 2024. "Flood susceptibility prediction using MaxEnt and frequency ratio modeling for Kokcha River in Afghanistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(2), pages 1367-1394, January.
    4. Halit Enes Aydin & Muzaffer Can Iban, 2023. "Predicting and analyzing flood susceptibility using boosting-based ensemble machine learning algorithms with SHapley Additive exPlanations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2957-2991, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hazem Ghassan Abdo & Sahar Mohammed Richi & Saeed Alqadhi & Taorui Zeng & Pankaj Prasad & Ioannis Kotaridis & Maged Muteb Alharbi & Lina A. Khaddour & Javed Mallick, 2025. "A hybrid machine learning modelling for optimization of flood susceptibility mapping in the eastern Mediterranean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(6), pages 7199-7228, April.
    2. Henrich Grežo & Matej Močko & Martin Izsóff & Gréta Vrbičanová & František Petrovič & Jozef Straňák & Zlatica Muchová & Martina Slámová & Branislav Olah & Ivo Machar, 2020. "Flood Risk Assessment for the Long-Term Strategic Planning Considering the Placement of Industrial Parks in Slovakia," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    3. Binh Thai Pham & Chongchong Qi & Lanh Si Ho & Trung Nguyen-Thoi & Nadhir Al-Ansari & Manh Duc Nguyen & Huu Duy Nguyen & Hai-Bang Ly & Hiep Van Le & Indra Prakash, 2020. "A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    4. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    5. Hui Xu & Junlong Gao & Xinchun Yu & Qianqian Qin & Shiqiang Du & Jiahong Wen, 2024. "Assessment of Rainstorm Waterlogging Disaster Risk in Rapidly Urbanizing Areas Based on Land Use Scenario Simulation: A Case Study of Jiangqiao Town in Shanghai, China," Land, MDPI, vol. 13(7), pages 1-18, July.
    6. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    7. Viet-Tien Nguyen & Trong Hien Tran & Ngoc Anh Ha & Van Liem Ngo & Al-Ansari Nadhir & Van Phong Tran & Huu Duy Nguyen & Malek M. A. & Ata Amini & Indra Prakash & Lanh Si Ho & Binh Thai Pham, 2019. "GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
    8. Mohamed Abdelkareem & Abbas M. Mansour, 2023. "Risk assessment and management of vulnerable areas to flash flood hazards in arid regions using remote sensing and GIS-based knowledge-driven techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2269-2295, July.
    9. Hao Chen & Zongxue Xu & Yang Liu & Yixuan Huang & Fang Yang, 2022. "Urban Flood Risk Assessment Based on Dynamic Population Distribution and Fuzzy Comprehensive Evaluation," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    10. Ramón Espinel & Gricelda Herrera-Franco & José Luis Rivadeneira García & Paulo Escandón-Panchana, 2024. "Artificial Intelligence in Agricultural Mapping: A Review," Agriculture, MDPI, vol. 14(7), pages 1-36, July.
    11. Mariusz Starzec & Sabina Kordana-Obuch, 2024. "Evaluating the Utility of Selected Machine Learning Models for Predicting Stormwater Levels in Small Streams," Sustainability, MDPI, vol. 16(2), pages 1-29, January.
    12. Saeid Janizadeh & Mehdi Vafakhah & Zoran Kapelan & Naghmeh Mobarghaee Dinan, 2021. "Novel Bayesian Additive Regression Tree Methodology for Flood Susceptibility Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4621-4646, October.
    13. Wei Yang & Shucheng Tan & Tao Zhu & Siyuan Xia & Yunxiang Lan, 2025. "Susceptibility evaluation of slip avalanche-slip geohazards in Xiangyun (Southwest China) based on lM-LR coupling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 5993-6010, March.
    14. Shuxian Liu & Yang Liu & Zhigang Chu & Kun Yang & Guanlan Wang & Lisheng Zhang & Yuanda Zhang, 2023. "Evaluation of Tropical Cyclone Disaster Loss Using Machine Learning Algorithms with an eXplainable Artificial Intelligence Approach," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    15. Abdul Baser Qasimi & Vahid Isazade & Ronny Berndtsson, 2024. "Flood susceptibility prediction using MaxEnt and frequency ratio modeling for Kokcha River in Afghanistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(2), pages 1367-1394, January.
    16. Yutong Duan & Miao Yu & Weiyang Sun & Shiyang Zhang & Yunyuan Li, 2024. "Spatial Vulnerability Assessment for Mountain Cities Based on the GA-BP Neural Network: A Case Study in Linzhou, Henan, China," Land, MDPI, vol. 13(6), pages 1-25, June.
    17. Jui-Sheng Chou & Chang-Ping Yu & Dinh-Nhat Truong & Billy Susilo & Anyi Hu & Qian Sun, 2019. "Predicting Microbial Species in a River Based on Physicochemical Properties by Bio-Inspired Metaheuristic Optimized Machine Learning," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    18. Sina Paryani & Mojgan Bordbar & Changhyun Jun & Mahdi Panahi & Sayed M. Bateni & Christopher M. U. Neale & Hamidreza Moeini & Saro Lee, 2023. "Hybrid-based approaches for the flood susceptibility prediction of Kermanshah province, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 837-868, March.
    19. Hyung-Sup Jung & Saro Lee & Biswajeet Pradhan, 2020. "Sustainable Applications of Remote Sensing and Geospatial Information Systems to Earth Observations," Sustainability, MDPI, vol. 12(6), pages 1-6, March.
    20. Nino Krvavica & Ante Šiljeg & Bojana Horvat & Lovre Panđa, 2023. "Pluvial Flash Flood Hazard and Risk Mapping in Croatia: Case Study in the Gospić Catchment," Sustainability, MDPI, vol. 15(2), pages 1-26, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:15:d:10.1007_s11069-025-07482-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.