IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i8d10.1007_s11069-024-06532-1.html
   My bibliography  Save this article

Assessment of the long-term effects of climate on vegetation in 25 watersheds in dry and semi-dry areas, Algeria

Author

Listed:
  • Hadjer Keria

    (Department of Natural and Life Sciences, University of Mohamed Boudiaf)

  • Ettayib Bensaci

    (University of Mohamed Boudiaf)

  • Asma Zoubiri

    (University of Mohamed Boudiaf)

Abstract

It is necessary to understand vegetation evolution and its sensitivity to the global climate, particularly with regard to ecosystems and environmental balance. 25 watersheds were selected in Algeria for this study. Here, the vegetation index (NDVI) and climatic variables (precipitation and temperature) were used to verify the temporal-spatial patterns and impact of the time difference from 1981 to 2021 by applying the correlation coefficient and time delay analysis. The NDVI showed a significant decline, especially in recent years, and spatial differences in NDVI in all areas of study were narrow (slope values from 0.0005 to 0.04), decrease in surface water area from year to year was observed in all regions. The vegetation index was negatively associated with low rainfall and high temperatures. The vegetation’s reaction to temperature has been greater than that too rainfall. In general, a time lag in the vegetation response was found over a time period of at least 1 month. This study provided new insights into variations in vegetation change and the importance of vegetation recovery.

Suggested Citation

  • Hadjer Keria & Ettayib Bensaci & Asma Zoubiri, 2024. "Assessment of the long-term effects of climate on vegetation in 25 watersheds in dry and semi-dry areas, Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7575-7596, June.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:8:d:10.1007_s11069-024-06532-1
    DOI: 10.1007/s11069-024-06532-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06532-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06532-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qingqing Ma & Linrong Chai & Fujiang Hou & Shenghua Chang & Yushou Ma & Atsushi Tsunekawa & Yunxiang Cheng, 2019. "Quantifying Grazing Intensity Using Remote Sensing in Alpine Meadows on Qinghai-Tibetan Plateau," Sustainability, MDPI, vol. 11(2), pages 1-14, January.
    2. Alistair W. R. Seddon & Marc Macias-Fauria & Peter R. Long & David Benz & Kathy J. Willis, 2016. "Sensitivity of global terrestrial ecosystems to climate variability," Nature, Nature, vol. 531(7593), pages 229-232, March.
    3. Yunfeng Hu & Rina Dao & Yang Hu, 2019. "Vegetation Change and Driving Factors: Contribution Analysis in the Loess Plateau of China during 2000–2015," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    4. Jushuang Qin & Menglu Ma & Jiabin Shi & Shurui Ma & Baoguo Wu & Xiaohui Su, 2023. "The Time-Lag Effect of Climate Factors on the Forest Enhanced Vegetation Index for Subtropical Humid Areas in China," IJERPH, MDPI, vol. 20(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengmeng Gao & Nan Yang & Qiong Liu, 2024. "What Drives Vegetation Evolution in the Middle Reaches of the Yellow River Basin, Climate Change or Human Activities?," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
    2. Hao Wang & Yunfeng Hu, 2021. "Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    3. Qi Luo & Lin Zhen & Yunfeng Hu, 2020. "The Effects of Restoration Practices on a Small Watershed in China’s Loess Plateau: A Case Study of the Qiaozigou Watershed," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    4. Shulin Chen & Zhenghao Zhu & Xiaotong Liu & Li Yang, 2022. "Variation in Vegetation and Its Driving Force in the Pearl River Delta Region of China," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    5. Yuhao Jin & Han Zhang & Yuchao Yan & Peitong Cong, 2020. "A Semi-Parametric Geographically Weighted Regression Approach to Exploring Driving Factors of Fractional Vegetation Cover: A Case Study of Guangdong," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    6. Tingting Xia & Xuan Xue & Haowei Wang & Zhen Zhu & Zhi Li & Yang Wang, 2024. "Mechanism of Vegetation Greenness Change and Its Correlation with Terrestrial Water Storage in the Tarim River Basin," Land, MDPI, vol. 13(5), pages 1-21, May.
    7. Zhiyuan Song & Ziyi Gao & Xianming Yang & Yuejing Ge, 2022. "Distinguishing the Impacts of Human Activities and Climate Change on the Livelihood Environment of Pastoralists in the Qinghai Lake Basin," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    8. Cecilia Parracciani & Robert Buitenwerf & Jens-Christian Svenning, 2023. "Impacts of Climate Change on Vegetation in Kenya: Future Projections and Implications for Protected Areas," Land, MDPI, vol. 12(11), pages 1-20, November.
    9. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2020. "Accounting for diverse risk attitudes in measures of risk perceptions: A case study of climate change risk for small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 95(C).
    10. Meng Wang & Zhengfeng An, 2022. "Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China," Land, MDPI, vol. 11(8), pages 1-21, July.
    11. Mengyao Fan & Dawei Ma & Xianglin Huang & Ru An, 2023. "Adaptability Evaluation of the Spatiotemporal Fusion Model of Sentinel-2 and MODIS Data in a Typical Area of the Three-River Headwater Region," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    12. Luca Rindi & Jianyu He & Mara Miculan & Matteo Dell’Acqua & Mario Enrico Pè & Lisandro Benedetti-Cecchi, 2025. "Legacies of temperature fluctuations promote stability in marine biofilm communities," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Kexin Zhang & Jiajia Luo & Jiaoting Peng & Hongchang Zhang & Yan Ji & Hong Wang, 2022. "Analysis of Extreme Temperature Variations on the Yunnan-Guizhou Plateau in Southwestern China over the Past 60 Years," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    14. Tengfei Yuan & Shaojian Huang & Peng Zhang & Zhengcheng Song & Jun Ge & Xin Miao & Yujuan Wang & Qiaotong Pang & Dong Peng & Peipei Wu & Junjiong Shao & Peipei Zhang & Yabo Wang & Hongyan Guo & Weidon, 2024. "Potential decoupling of CO2 and Hg uptake process by global vegetation in the 21st century," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Yue Pan & Jian Gong & Jingye Li, 2022. "Assessment of Remote Sensing Ecological Quality by Introducing Water and Air Quality Indicators: A Case Study of Wuhan, China," Land, MDPI, vol. 11(12), pages 1-22, December.
    16. Hui Zhang & Jinting Guo & Xiaotian Li & Yajie Liu & Tiejuan Wang, 2023. "Spatiotemporal Variation in and Responses of the NDVI to Climate in Western Ordos and Eastern Alxa," Sustainability, MDPI, vol. 15(5), pages 1-12, March.
    17. Suizi Wang & Jiangwen Fan & Yuzhe Li & Lin Huang, 2019. "Effects of Grazing Exclusion on Biomass Growth and Species Diversity among Various Grassland Types of the Tibetan Plateau," Sustainability, MDPI, vol. 11(6), pages 1-13, March.
    18. Lin Jin & Zhijie Zhang, 2024. "Assessing Environmental Sustainability in the Transnational Basin of the Tumen River Based on Remote Sensing Data and a Geographical Detector," Sustainability, MDPI, vol. 16(18), pages 1-17, September.
    19. Xi Liu & Guoming Du & Xiaodie Zhang & Xing Li & Shining Lv & Yinghao He, 2024. "Vegetation Dynamics and Driving Mechanisms Considering Time-Lag and Accumulation Effects: A Case Study of Hubao–Egyu Urban Agglomeration," Land, MDPI, vol. 13(9), pages 1-17, August.
    20. Yue, Ping & Zhang, Qiang & Ren, Xueyuan & Yang, Zesu & Li, Hongyu & Yang, Yang, 2022. "Environmental and biophysical effects of evapotranspiration in semiarid grassland and maize cropland ecosystems over the summer monsoon transition zone of China," Agricultural Water Management, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:8:d:10.1007_s11069-024-06532-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.