IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i6d10.1007_s11069-023-06399-8.html
   My bibliography  Save this article

Pixel-based classification method for earthquake-induced landslide mapping using remotely sensed imagery, geospatial data and temporal change information

Author

Listed:
  • Adel Asadi

    (Tufts University)

  • Laurie G. Baise

    (Tufts University)

  • Magaly Koch

    (Boston University)

  • Babak Moaveni

    (Tufts University)

  • Snehamoy Chatterjee

    (Michigan Technological University)

  • Yusupujiang Aimaiti

    (Boston University)

Abstract

A series of earthquakes occurred in Kumamoto, Japan, in April 2016, which caused numerous landslides. In this study, high-resolution pre-event and post-event optical imagery, plus bi-temporal Synthetic Aperture Radar (SAR) data are paired with geospatial data to train a pixel-based machine learning classification algorithm using logistic regression to identify landslides occurred because of the Kumamoto earthquakes. The geospatial data used include a categorical variable (surficial geology), and six continuous variables including elevation, slope, aspect, curvature, annual precipitation, and landslide probability derived by the USGS preferred geospatial model which incorporates ground shaking in the input parameters. Grayscale index change and vegetation index change are also calculated from the optical imagery and used as input variables, in addition to temporal differences in HH (horizontally transmitted and horizontally received polarization) and HV (horizontally transmitted and vertically received polarization) amplitudes of SAR data. A detailed human-drawn landslide occurrence inventory was used as ground-truth for model development and testing. The selection of optimal features was done using a supervised feature ranking method based on the Receiver Operating Characteristic (ROC) curve. To weigh the benefit of combining different types of imagery, temporal change information and geospatial environmental indicators for landslide mapping after earthquakes, five different combinations of features were tested, and the results showed that adding data of selected geospatial parameters (landslide probability, slope, curvature, precipitation, and geology) plus selected change indices (grayscale index change, vegetation index change, and HV amplitude difference of SAR data) to the imagery (post event optical) lead to the highest classification accuracy of 86.5% on class-balanced independent testing data. A comparative analysis was conducted to evaluate the performance of the proposed method with five other commonly used machine learning classification methods, and the results have shown the superiority of the logistic regression method, followed by support vector machines.

Suggested Citation

  • Adel Asadi & Laurie G. Baise & Magaly Koch & Babak Moaveni & Snehamoy Chatterjee & Yusupujiang Aimaiti, 2024. "Pixel-based classification method for earthquake-induced landslide mapping using remotely sensed imagery, geospatial data and temporal change information," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(6), pages 5163-5200, April.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:6:d:10.1007_s11069-023-06399-8
    DOI: 10.1007/s11069-023-06399-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06399-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06399-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang Hong & Robert Adler & George Huffman, 2007. "Use of satellite remote sensing data in the mapping of global landslide susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 245-256, November.
    2. Kemal Hacıefendioğlu & Gökhan Demir & Hasan Basri Başağa, 2021. "Landslide detection using visualization techniques for deep convolutional neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 329-350, October.
    3. Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derly Gómez & Edwin F. García & Edier Aristizábal, 2023. "Spatial and temporal landslide distributions using global and open landslide databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 25-55, May.
    2. Fhatuwani Sengani & François Mulenga, 2020. "Application of Limit Equilibrium Analysis and Numerical Modeling in a Case of Slope Instability," Sustainability, MDPI, vol. 12(21), pages 1-33, October.
    3. Mohammad Mehrabi, 2022. "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 901-937, March.
    4. Amit Bera & Bhabani Prasad Mukhopadhyay & Debasish Das, 2019. "Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 935-959, March.
    5. S. Modugno & S. C. M. Johnson & P. Borrelli & E. Alam & N. Bezak & H. Balzter, 2022. "Analysis of human exposure to landslides with a GIS multiscale approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 387-412, May.
    6. Daniel M. Francis & L. Sebastian Bryson, 2025. "Coupled landslide analyses through dynamic susceptibility and forecastable hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(3), pages 2971-2999, February.
    7. Xiang Zhang & Minghui Zhang & Xin Liu & Berhanu Keno Terfa & Won-Ho Nam & Xihui Gu & Xu Zhang & Chao Wang & Jian Yang & Peng Wang & Chenghong Hu & Wenkui Wu & Nengcheng Chen, 2024. "Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11485-11525, October.
    8. Hone-Jay Chu & Yi-Chin Chen, 2018. "Crowdsourcing photograph locations for debris flow hot spot mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1259-1276, February.
    9. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    10. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    11. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    12. Bo Cao & Qingyi Li & Yuhang Zhu, 2022. "Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    13. Mustafa Kamal & Baolei Zhang & Jianfei Cao & Xin Zhang & Jun Chang, 2022. "Comparative Study of Artificial Neural Network and Random Forest Model for Susceptibility Assessment of Landslides Induced by Earthquake in the Western Sichuan Plateau, China," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    14. Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
    15. George Gaprindashvili & Cees Westen, 2016. "Generation of a national landslide hazard and risk map for the country of Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 69-101, January.
    16. Jeevan R. Kulkarni & Sneha S. Kulkarni & Mitali U. Inamdar & Nitin M. Tamhankar & Spandan B. Waghmare & Kiran R. Thombare & Paresh S. Mhetre & Tanuja Khatavkar & Yashodhan Panse & Amey Patwardhan & Yo, 2022. "“Satark”: Landslide Prediction System over Western Ghats of India," Land, MDPI, vol. 11(5), pages 1-23, May.
    17. Chi Yang & Jinghan Wang & Shuyi Li & Ruihan Xiong & Xiaobo Li & Lin Gao & Xu Guo & Chuanming Ma & Hanxiang Xiong & Yang Qiu, 2024. "Landslide Susceptibility Assessment and Future Prediction with Land Use Change and Urbanization towards Sustainable Development: The Case of the Li River Valley in Yongding, China," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
    18. Edris Alam & Fahim Sufi & Abu Reza Md. Towfiqul Islam, 2023. "A Scenario-Based Case Study: Using AI to Analyze Casualties from Landslides in Chittagong Metropolitan Area, Bangladesh," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    19. Zonghu Liao & Yang Hong & Dalia Kirschbaum & Robert Adler & Jonathan Gourley & Rick Wooten, 2011. "Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 325-339, July.
    20. Jae-Hyeon Park & Seong-Gyun Park & Hyun Kim, 2022. "Applicability Evaluation of Landslide Vulnerability Criteria for Decision on Landcreep-Vulnerable Areas in South Korea," Sustainability, MDPI, vol. 14(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:6:d:10.1007_s11069-023-06399-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.