Estimating landslide hazard distribution based on machine learning and bivariate statistics in Utmah Region, Yemen
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-023-06310-5
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Xianyu Yu & Yi Wang & Ruiqing Niu & Youjian Hu, 2016. "A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, Chin," IJERPH, MDPI, vol. 13(5), pages 1-35, May.
- Minu Treesa Abraham & Neelima Satyam & Revuri Lokesh & Biswajeet Pradhan & Abdullah Alamri, 2021. "Factors Affecting Landslide Susceptibility Mapping: Assessing the Influence of Different Machine Learning Approaches, Sampling Strategies and Data Splitting," Land, MDPI, vol. 10(9), pages 1-24, September.
- Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
- C. van Westen & N. Rengers & R. Soeters, 2003. "Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 399-419, November.
- Scott Miles, 2011. "Participatory model assessment of earthquake-induced landslide hazard models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 749-766, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Batmyagmar Dashbold & L. Sebastian Bryson & Matthew M. Crawford, 2023. "Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 235-265, March.
- Xiaoxiao Ju & Junjie Li & Chongxiang Sun & Bo Li, 2024. "Landslide Susceptibility Assessment Using a CNN–BiLSTM-AM Model," Sustainability, MDPI, vol. 16(21), pages 1-24, October.
- Yumiao Wang & Xueling Wu & Zhangjian Chen & Fu Ren & Luwei Feng & Qingyun Du, 2019. "Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China," IJERPH, MDPI, vol. 16(3), pages 1-27, January.
- Cristina Tarantino & Palma Blonda & Guido Pasquariello, 2007. "Remote sensed data for automatic detection of land-use changes due to human activity in support to landslide studies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 245-267, April.
- Arezoo Mokhtari & Behnam Tashayo & Kaveh Deilami, 2021. "Implications of Nonstationary Effect on Geographically Weighted Total Least Squares Regression for PM 2.5 Estimation," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
- Yang Yi & Chen Zhang & Jinqi Zhu & Yugang Zhang & Hao Sun & Hongzhang Kang, 2022. "Spatio-Temporal Evolution, Prediction and Optimization of LUCC Based on CA-Markov and InVEST Models: A Case Study of Mentougou District, Beijing," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
- Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
- Yusuf Susena & Danang Sri Hadmoko & Sandy Budi Wibowo, 2025. "Machine learning techniques on spatio-temporal data for landslide susceptibility assessment at Dieng Mountainous Region, Banjarnegara district, Central Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(8), pages 9925-9962, May.
- Žiga Malek & Veronica Zumpano & Haydar Hussin, 2018. "Forest management and future changes to ecosystem services in the Romanian Carpathians," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1275-1291, June.
- Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
- Hanxu Zhou & Ailan Che & Xianghua Shuai & Yanbo Cao, 2024. "Seismic vulnerability assessment model of civil structure using machine learning algorithms: a case study of the 2014 Ms6.5 Ludian earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6481-6508, May.
- Ashraf Abdelkarim & Ahmed F. D. Gaber & Ibtesam I. Alkadi & Haya M. Alogayell, 2019. "Integrating Remote Sensing and Hydrologic Modeling to Assess the Impact of Land-Use Changes on the Increase of Flood Risk: A Case Study of the Riyadh–Dammam Train Track, Saudi Arabia," Sustainability, MDPI, vol. 11(21), pages 1-32, October.
- Ying-Jen Chang & Kuo-Chuan Hung & Li-Kai Wang & Chia-Hung Yu & Chao-Kun Chen & Hung-Tze Tay & Jhi-Joung Wang & Chung-Feng Liu, 2021. "A Real-Time Artificial Intelligence-Assisted System to Predict Weaning from Ventilator Immediately after Lung Resection Surgery," IJERPH, MDPI, vol. 18(5), pages 1-14, March.
- Paúl Carrión-Mero & Néstor Montalván-Burbano & Fernando Morante-Carballo & Adolfo Quesada-Román & Boris Apolo-Masache, 2021. "Worldwide Research Trends in Landslide Science," IJERPH, MDPI, vol. 18(18), pages 1-24, September.
- C. Abdallah & G. Faour, 2017. "Landslide hazard mapping of Ibrahim River Basin, Lebanon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 237-266, January.
- Nikolaos Tavoularis & George Papathanassiou & Athanassios Ganas & Panagiotis Argyrakis, 2021. "Development of the Landslide Susceptibility Map of Attica Region, Greece, Based on the Method of Rock Engineering System," Land, MDPI, vol. 10(2), pages 1-31, February.
- Saeid SHABANI, 2017. "Modelling and mapping of soil damage caused by harvesting in Caspian forests (Iran) using CART and RF data mining techniques," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(9), pages 425-432.
- Massimo Conforti & Gaetano Robustelli & Francesco Muto & Salvatore Critelli, 2012. "Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 127-141, March.
- Pratap Ram & Vikram Gupta, 2022. "Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, lesser himalaya, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 473-501, January.
- Ananta Pradhan & Yun-Tae Kim, 2014. "Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1189-1217, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06310-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.