IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i3d10.1007_s11069-023-06285-3.html
   My bibliography  Save this article

Probabilistic mapping of life loss due to dam-break flooding

Author

Listed:
  • Andrea Maranzoni

    (University of Parma)

  • Marco D’Oria

    (University of Parma)

  • Carmine Rizzo

    (University of Parma)

Abstract

Assessment of flood damage caused by dam failures is typically performed deterministically on the basis of a single preselected scenario, neglecting uncertainties in dam-break parameters, exposure information, and vulnerability model. This paper proposes a probabilistic flood damage model for the estimation of life loss due to dam-break flooding with the aim of overcoming this limitation and performing a more comprehensive and informative evaluation of flood risk. The significant novelty lies in the fact that the model combines uncertainties associated with all three components of risk: hazard, exposure, and vulnerability. Uncertainty in flood hazard is introduced by considering a set of dam-break scenarios, each characterized by different breach widths and reservoir levels. Each scenario is linked to a probability, which is assumed conditional on the dam-break event. Uncertainty in exposure is accounted for using dasymetric maps of the population at risk for two socio-economic states (representing business and non-business hours of a typical week), along with associated likelihood. Vulnerability to flooding is described through a well-established empirical hazard-loss function relating the fatality rate of the population at risk to the flood hazard, the flood severity understanding, and the warning time; a confidence band provides quantitative information about the associated uncertainty. The probabilistic damage model was applied to the case study of the hypothetical collapse of Mignano concrete gravity dam (northern Italy). The main outcome is represented by probabilistic flood damage maps, which show the spatial distribution of selected percentiles of a loss-of-life risk index coupled with the corresponding uncertainty bounds.

Suggested Citation

  • Andrea Maranzoni & Marco D’Oria & Carmine Rizzo, 2024. "Probabilistic mapping of life loss due to dam-break flooding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2433-2460, February.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06285-3
    DOI: 10.1007/s11069-023-06285-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06285-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06285-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael L. DeKay & Gary H. McClelland, 1993. "Predicting Loss of Life in Cases of Dam Failure and Flash Flood," Risk Analysis, John Wiley & Sons, vol. 13(2), pages 193-205, April.
    2. Manuela Mauro & Karin Bruijn & Matteo Meloni, 2012. "Quantitative methods for estimating flood fatalities: towards the introduction of loss-of-life estimation in the assessment of flood risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1083-1113, September.
    3. Armanda Rodrigues & Maria Santos & A. Santos & Fernanda Rocha, 2002. "Dam-Break Flood Emergency Management System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(6), pages 489-503, December.
    4. Sofia Sarchani & Aristeidis G. Koutroulis, 2022. "Probabilistic dam breach flood modeling: the case of Valsamiotis dam in Crete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1763-1814, November.
    5. Edmund Penning-Rowsell & Peter Floyd & David Ramsbottom & Suresh Surendran, 2005. "Estimating Injury and Loss of Life in Floods: A Deterministic Framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 36(1), pages 43-64, September.
    6. H. Apel & G. Aronica & H. Kreibich & A. Thieken, 2009. "Flood risk analyses—how detailed do we need to be?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 79-98, April.
    7. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    8. Wei Ge & Zongkun Li & Robert Y. Liang & Wei Li & Yingchun Cai, 2017. "Methodology for Establishing Risk Criteria for Dams in Developing Countries, Case Study of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4063-4074, October.
    9. Muhammad Masood & Kuniyoshi Takeuchi, 2012. "Assessment of flood hazard, vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 757-770, March.
    10. S. Jonkman & J. Vrijling & A. Vrouwenvelder, 2008. "Methods for the estimation of loss of life due to floods: a literature review and a proposal for a new method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 353-389, September.
    11. Anna Kalinina & Matteo Spada & David F. Vetsch & Stefano Marelli & Calvin Whealton & Peter Burgherr & Bruno Sudret, 2020. "Metamodeling for Uncertainty Quantification of a Flood Wave Model for Concrete Dam Breaks," Energies, MDPI, vol. 13(14), pages 1-25, July.
    12. H. Moel & B. Jongman & H. Kreibich & B. Merz & E. Penning-Rowsell & P. Ward, 2015. "Flood risk assessments at different spatial scales," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 865-890, August.
    13. Ruirui Sun & Xiaoling Wang & Zhengyin Zhou & Xuefei Ao & Xiaopei Sun & Mingrui Song, 2014. "Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing. Part I: model development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1547-1568, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    2. Dongjing Huang & Zhongbo Yu & Yiping Li & Dawei Han & Lili Zhao & Qi Chu, 2017. "Calculation method and application of loss of life caused by dam break in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 39-57, January.
    3. Zoran Vojinovic & Michael Hammond & Daria Golub & Sianee Hirunsalee & Sutat Weesakul & Vorawit Meesuk & Neiler Medina & Arlex Sanchez & Sisira Kumara & Michael Abbott, 2016. "Holistic approach to flood risk assessment in areas with cultural heritage: a practical application in Ayutthaya, Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 589-616, March.
    4. Zoran Vojinovic & Michael Hammond & Daria Golub & Sianee Hirunsalee & Sutat Weesakul & Vorawit Meesuk & Neiler Medina & Arlex Sanchez & Sisira Kumara & Michael Abbott, 2016. "Holistic approach to flood risk assessment in areas with cultural heritage: a practical application in Ayutthaya, Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 589-616, March.
    5. Heidi Kreibich & Anna Botto & Bruno Merz & Kai Schröter, 2017. "Probabilistic, Multivariable Flood Loss Modeling on the Mesoscale with BT‐FLEMO," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 774-787, April.
    6. Zongzhi Wang & Jingjing Wu & Liang Cheng & Kelin Liu & Yi-Ming Wei, 2018. "Regional flood risk assessment via coupled fuzzy c-means clustering methods: an empirical analysis from China’s Huaihe River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 803-822, September.
    7. Mehdi Karbasi & Alireza Shokoohi & Bahram Saghafian, 2018. "Loss of Life Estimation Due to Flash Floods in Residential Areas using a Regional Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4575-4589, November.
    8. Anna Rita Scorzini & Maurizio Leopardi, 2017. "River basin planning: from qualitative to quantitative flood risk assessment: the case of Abruzzo Region (central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 71-93, August.
    9. Hao Gu & Xiao Fu & Yantao Zhu & Yijun Chen & Lixian Huang, 2020. "Analysis of Social and Environmental Impact of Earth-Rock Dam Breaks Based on a Fuzzy Comprehensive Evaluation Method," Sustainability, MDPI, vol. 12(15), pages 1-15, August.
    10. Song-Yue Yang & Che-Hao Chang & Chih-Tsung Hsu & Shiang-Jen Wu, 2022. "Variation of uncertainty of drainage density in flood hazard mapping assessment with coupled 1D–2D hydrodynamics model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2297-2315, April.
    11. Chong-Xun Mo & Gui-Yan Mo & Liu Peng & Qing Yang & Xin-Rong Zhu & Qing-Ling Jiang & Ju-Liang Jin, 2019. "Quantitative Vulnerability Model of Earth Dam Overtopping and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1801-1815, March.
    12. David Ocio & Christian Stocker & Ángel Eraso & Arantza Martínez & José María Sanz Galdeano, 2016. "Towards a reliable and cost-efficient flood risk management: the case of the Basque Country (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 617-639, March.
    13. Richard Franklin & Jemma King & Peter Aitken & Peter Leggat, 2014. "“Washed away”—assessing community perceptions of flooding and prevention strategies: a North Queensland example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1977-1998, September.
    14. Wim Kellens & Wouter Vanneuville & Els Verfaillie & Ellen Meire & Pieter Deckers & Philippe Maeyer, 2013. "Flood Risk Management in Flanders: Past Developments and Future Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3585-3606, August.
    15. Rosa Fernández Ropero & María Julia Flores & Rafael Rumí, 2022. "Bayesian Networks for Preprocessing Water Management Data," Mathematics, MDPI, vol. 10(10), pages 1-18, May.
    16. Borowska-Stefańska, Marta & Kobojek, Sławomir & Kowalski, Michał & Lewicki, Marek & Tomalski, Przemysław & Wiśniewski, Szymon, 2021. "Changes in the spatial development of flood hazard areas in Poland between 1990 and 2018 in the light of legal conditions," Land Use Policy, Elsevier, vol. 102(C).
    17. Weijiang Li & Bo Xu & Jiahong Wen, 2016. "Scenario-based community flood risk assessment: a case study of Taining county town, Fujian province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 193-208, May.
    18. Maity, Somnath & Sundar, S., 2022. "A coupled model for macroscopic behavior of crowd in flood induced evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    19. María Bermúdez & Andreas Paul Zischg, 2018. "Sensitivity of flood loss estimates to building representation and flow depth attribution methods in micro-scale flood modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1633-1648, July.
    20. Simon Lloyd & R. Kovats & Zaid Chalabi & Sally Brown & Robert Nicholls, 2016. "Modelling the influences of climate change-associated sea-level rise and socioeconomic development on future storm surge mortality," Climatic Change, Springer, vol. 134(3), pages 441-455, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06285-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.