IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i1d10.1007_s11069-023-06218-0.html
   My bibliography  Save this article

Health risk assessment of trace elements (Pb, Cd, Cu, Fe) in agricultural soil in Kerman City, Southeast of Iran

Author

Listed:
  • Roghayeh Abedi Sarvestani

    (Kerman University of Medical Sciences)

  • Majid Aghasi

    (Kerman University of Medical Sciences)

  • Hadi Niknejad

    (Shahid Beheshti University of Medical Science)

Abstract

Among environmental pollutants, trace elements are of particular importance due to their non-degradability and physiological effects on living organisms even at low concentrations. These elements gradually accumulate in the soil due to their low mobility and eventually enter the food chain, posing a threat to the health of humans and other organisms. Therefore, it is essential to study the distribution and concentration of trace elements in order to assess soil pollution and maintain environmental quality. In this research, a human health risk assessment of trace elements in agricultural soils in Kerman City was conducted. The study employed a descriptive-cross-sectional approach, involving the collection of 74 soil samples from agricultural lands. Additionally, 40 samples from rocks (lime, conglomerate) and wind sediments, alluvium, and platy sediments were collected. Furthermore, 41 soil samples were taken from residential areas and polluting areas such as car repair shops, gas stations, battery productions, car painting shops, and landfills. The concentrations of cadmium, lead, iron, and copper were determined using a graphic furnace atomic absorption system. The Nemrow comprehensive index method was utilized to qualitatively and quantitatively assess soil pollution, identify toxic sources, and evaluate anthropogenic effects. The carcinogenic and non-carcinogenic risks associated with trace elements in agricultural soil were assessed using the recommended method proposed by the US Environmental Protection Agency, considering both children and adults. The results indicated that the mean concentration of trace elements, except for copper, in the agricultural soils studied was higher than the natural background level. According to the Nemrow index [contamination factor (CF) and pollution loading index (PLI)], the agricultural soils were heavily contaminated with lead (CF > 3), while the contamination levels of the target trace elements in all areas fell within the low pollution range (PLI ≤ 1). The geo-accumulation index (Igeo) revealed that the accumulation of lead in agricultural soils of Kerman City ranged from low pollution (0

Suggested Citation

  • Roghayeh Abedi Sarvestani & Majid Aghasi & Hadi Niknejad, 2024. "Health risk assessment of trace elements (Pb, Cd, Cu, Fe) in agricultural soil in Kerman City, Southeast of Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(1), pages 339-367, January.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06218-0
    DOI: 10.1007/s11069-023-06218-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06218-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06218-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaya Liang & Xiaoyun Yi & Zhi Dang & Qin Wang & Houmei Luo & Jie Tang, 2017. "Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China," IJERPH, MDPI, vol. 14(12), pages 1-17, December.
    2. Hang Zhou & Wen-Tao Yang & Xin Zhou & Li Liu & Jiao-Feng Gu & Wen-Lei Wang & Jia-Ling Zou & Tao Tian & Pei-Qin Peng & Bo-Han Liao, 2016. "Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment," IJERPH, MDPI, vol. 13(3), pages 1-12, March.
    3. Jin Wu & Yanguo Teng & Sijin Lu & Yeyao Wang & Xudong Jiao, 2014. "Evaluation of Soil Contamination Indices in a Mining Area of Jiangxi, China," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minsi Xiao & Shitong Xu & Bing Yang & Guangcong Zeng & Lidan Qian & Haiwei Huang & Sili Ren, 2022. "Contamination, Source Apportionment, and Health Risk Assessment of Heavy Metals in Farmland Soils Surrounding a Typical Copper Tailings Pond," IJERPH, MDPI, vol. 19(21), pages 1-15, November.
    2. Zhou Li & Hong Su & Li Wang & Danbiao Hu & Lijun Zhang & Jian Fang & Micong Jin & Samuel Selorm Fiati Kenston & Xin Song & Hongbo Shi & Jinshun Zhao & Guochuan Mao, 2018. "Epidemiological Study on Metal Pollution of Ningbo in China," IJERPH, MDPI, vol. 15(3), pages 1-14, February.
    3. Marco Race & Alberto Ferraro & Massimiliano Fabbricino & Agostino La Marca & Antonio Panico & Danilo Spasiano & Alice Tognacchini & Francesco Pirozzi, 2018. "Ethylenediamine- N , N ′-Disuccinic Acid (EDDS)—Enhanced Flushing Optimization for Contaminated Agricultural Soil Remediation and Assessment of Prospective Cu and Zn Transport," IJERPH, MDPI, vol. 15(3), pages 1-13, March.
    4. H. Holly Wang & Jing Yang & Na Hao, 2022. "Consumers’ Willingness to Pay for Rice from Remediated Soil: Potential from the Public in Sustainable Soil Pollution Treatment," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    5. Min Yang & Jianghua Zhang & Huaqing Chen & Hailing Ke & Youning Xu, 2023. "Human health risk assessment of toxic elements in soils and crops around Xiaoqinling gold-mining area, Northwestern China," Energy & Environment, , vol. 34(2), pages 283-303, March.
    6. Bifeng Hu & Xiaolin Jia & Jie Hu & Dongyun Xu & Fang Xia & Yan Li, 2017. "Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China," IJERPH, MDPI, vol. 14(9), pages 1-18, September.
    7. Agripina Ramírez & Gregorio García & Olaf Werner & José Navarro-Pedreño & Rosa M. Ros, 2021. "Implications of the Phytoremediation of Heavy Metal Contamination of Soils and Wild Plants in the Industrial Area of Haina, Dominican Republic," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    8. Yaya Liang & Xiaoyun Yi & Zhi Dang & Qin Wang & Houmei Luo & Jie Tang, 2017. "Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China," IJERPH, MDPI, vol. 14(12), pages 1-17, December.
    9. Richard Oruko Ongon’g & Joshua N. Edokpayi & Titus A. M. Msagati & Nikita T. Tavengwa & Grace N. Ijoma & John O. Odiyo, 2020. "The Potential Health Risk Associated with Edible Vegetables Grown on Cr(VI) Polluted Soils," IJERPH, MDPI, vol. 17(2), pages 1-19, January.
    10. Mirela Miclean & Oana Cadar & Erika Andrea Levei & Radu Roman & Alexandru Ozunu & Levente Levei, 2019. "Metal (Pb, Cu, Cd, and Zn) Transfer along Food Chain and Health Risk Assessment through Raw Milk Consumption from Free-Range Cows," IJERPH, MDPI, vol. 16(21), pages 1-14, October.
    11. Nwoke I. B. & Edori, E. S., 2020. "Concentrations of Heavy Metals in Vegetable (Telfairaoccidentalis) from Farmlands Close to Rumuagholu Dumpsite, Rivers State, Niger Delta, Nigeria," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 7(5), pages 181-184, May.
    12. Tingyu Fan & Jinhong Pan & Xingming Wang & Shun Wang & Akang Lu, 2022. "Ecological Risk Assessment and Source Apportionment of Heavy Metals in the Soil of an Opencast Mine in Xinjiang," IJERPH, MDPI, vol. 19(23), pages 1-14, November.
    13. Huiyue Su & Yueming Hu & Lu Wang & Huan Yu & Bo Li & Jiangchuan Liu, 2022. "Source Apportionment and Geographic Distribution of Heavy Metals and as in Soils and Vegetables Using Kriging Interpolation and Positive Matrix Factorization Analysis," IJERPH, MDPI, vol. 19(1), pages 1-18, January.
    14. Ionela Cătălina Vasilachi & Vasile Stoleru & Maria Gavrilescu, 2023. "Analysis of Heavy Metal Impacts on Cereal Crop Growth and Development in Contaminated Soils," Agriculture, MDPI, vol. 13(10), pages 1-50, October.
    15. Mengjie Wu & Hongyu Liu & Chunping Yang, 2019. "Effects of Pretreatment Methods of Wheat Straw on Adsorption of Cd(II) from Waterlogged Paddy Soil," IJERPH, MDPI, vol. 16(2), pages 1-21, January.
    16. Ronnel C. Nolos & Christine Joy M. Agarin & Maria Ysabel R. Domino & Pauline B. Bonifacio & Eduardo B. Chan & Doreen R. Mascareñas & Delia B. Senoro, 2022. "Health Risks Due to Metal Concentrations in Soil and Vegetables from the Six Municipalities of the Island Province in the Philippines," IJERPH, MDPI, vol. 19(3), pages 1-26, January.
    17. Guanghui Guo & Degang Zhang & Yuntao Wang, 2019. "Probabilistic Human Health Risk Assessment of Heavy Metal Intake via Vegetable Consumption around Pb/Zn Smelters in Southwest China," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    18. Congcong Cao & Li Wang & Hairong Li & Binggan Wei & Linsheng Yang, 2018. "Temporal Variation and Ecological Risk Assessment of Metals in Soil Nearby a Pb–Zn Mine in Southern China," IJERPH, MDPI, vol. 15(5), pages 1-13, May.
    19. Jin Wu & Ruitao Jia & Hao Xuan & Dasheng Zhang & Guoming Zhang & Yuting Xiao, 2022. "Priority Soil Pollution Management of Contaminated Site Based on Human Health Risk Assessment: A Case Study in Southwest China," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    20. Mohineeta Pandey & Astha Tirkey & Ankesh Tiwari & Sang Soo Lee & Rashmi Dubey & Ki Hyun Kim & Sudhir Kumar Pandey, 2022. "The Environmental Significance of Contaminants of Concern in the Soil–Vegetable Interface: Sources, Accumulation, Health Risks, and Mitigation through Biochar," Sustainability, MDPI, vol. 14(21), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06218-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.