IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i3d10.1007_s11069-023-06092-w.html
   My bibliography  Save this article

Influence of landslide inventory timespan and data selection on slope unit-based susceptibility models

Author

Listed:
  • S. Rolain

    (Vrije Universiteit Brussel)

  • M. Alvioli

    (Consiglio Nazionale Delle Ricerche)

  • Q. D. Nguyen

    (Phenikaa University)

  • T. L. Nguyen

    (Institute of Geosciences and Mineral Resources (VIGMR), Economic Geology, Mineral Materials Department)

  • L. Jacobs

    (KU Leuven
    University of Amsterdam)

  • M. Kervyn

    (Vrije Universiteit Brussel)

Abstract

Key advantages of modelling landslide susceptibility at the level of slope units—homogeneous landscape elements bound by drainage and divide lines—instead of grid cells have recently been highlighted. However, there has been limited investigation into the sensitivity of a slope unit landslide susceptibility approach to the characteristics of the landslide inventory used for calibration and the modelling approach. Here, a slope unit landslide susceptibility assessment is conducted for the Da Bac district, Vietnam, based on a multi-temporal landslide inventory, using logistic regression and support vector machine classification algorithms and a set of environmental and anthropogenic controlling factors. A landslide inventory for the period 2013–2020 was created using Google Earth© imagery, including large landslide events in 2018 and 2019. Results highlight that models calibrated from a sample of a single-year inventory and validated with a later year have the same accuracy as those calibrated with a random sample of the entire inventory. Regardless of the calibration data used, the support vector machine algorithm consistently outperforms logistic regression. This is evident from the lower standard deviation of susceptibility values observed when compared to those obtained using logistic regression. The landslide susceptibility models for slope units remain reliable, even when calibrated using a temporally short and event-specific landslide inventory.

Suggested Citation

  • S. Rolain & M. Alvioli & Q. D. Nguyen & T. L. Nguyen & L. Jacobs & M. Kervyn, 2023. "Influence of landslide inventory timespan and data selection on slope unit-based susceptibility models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2227-2244, September.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:3:d:10.1007_s11069-023-06092-w
    DOI: 10.1007/s11069-023-06092-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06092-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06092-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dieu Bui & Owe Lofman & Inge Revhaug & Oystein Dick, 2011. "Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1413-1444, December.
    2. Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
    3. Iris Bostjančić & Marina Filipović & Vlatko Gulam & Davor Pollak, 2021. "Regional-Scale Landslide Susceptibility Mapping Using Limited LiDAR-Based Landslide Inventories for Sisak-Moslavina County, Croatia," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    4. Shuai Zhao & Zhou Zhao, 2021. "A Comparative Study of Landslide Susceptibility Mapping Using SVM and PSO-SVM Models Based on Grid and Slope Units," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong Wen & Siyuan Zhao & Yuhang Liang & Sen Wang & Ling Tao & Jiren Xie, 2024. "Landslide development and susceptibility along the Yunling–Yanjing segment of the Lancang River using grid and slope units," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6149-6168, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi Yang & Jinghan Wang & Shuyi Li & Ruihan Xiong & Xiaobo Li & Lin Gao & Xu Guo & Chuanming Ma & Hanxiang Xiong & Yang Qiu, 2024. "Landslide Susceptibility Assessment and Future Prediction with Land Use Change and Urbanization towards Sustainable Development: The Case of the Li River Valley in Yongding, China," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
    2. Chonghao Zhu & Jianjing Zhang & Yang Liu & Donghua Ma & Mengfang Li & Bo Xiang, 2020. "Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: a case study in Sichuan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 173-204, January.
    3. Xiang Zhang & Minghui Zhang & Xin Liu & Berhanu Keno Terfa & Won-Ho Nam & Xihui Gu & Xu Zhang & Chao Wang & Jian Yang & Peng Wang & Chenghong Hu & Wenkui Wu & Nengcheng Chen, 2024. "Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11485-11525, October.
    4. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    5. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    6. Derly Gómez & Edwin F. García & Edier Aristizábal, 2023. "Spatial and temporal landslide distributions using global and open landslide databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 25-55, May.
    7. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    8. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    9. Jiang Li & Zhuoying Tan & Naigen Tan & Aboubakar Siddique & Jianshu Liu & Fenglin Wang & Wantao Li, 2025. "Machine Learning Method Application to Detect Predisposing Factors to Open-Pit Landslides: The Sijiaying Iron Mine Case Study," Land, MDPI, vol. 14(4), pages 1-27, March.
    10. Xiaoqing Zhao & Junwei Pu & Xingyou Wang & Junxu Chen & Liang Emlyn Yang & Zexian Gu, 2018. "Land-Use Spatio-Temporal Change and Its Driving Factors in an Artificial Forest Area in Southwest China," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    11. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    12. Kamila Pawluszek & Andrzej Borkowski, 2017. "Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 919-952, March.
    13. Bo Cao & Qingyi Li & Yuhang Zhu, 2022. "Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    14. Mustafa Kamal & Baolei Zhang & Jianfei Cao & Xin Zhang & Jun Chang, 2022. "Comparative Study of Artificial Neural Network and Random Forest Model for Susceptibility Assessment of Landslides Induced by Earthquake in the Western Sichuan Plateau, China," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    15. Michele Marconi & Beatrice Gatto & Michele Magni & Fausto Marincioni, 2016. "A rapid method for flood susceptibility mapping in two districts of Phatthalung Province (Thailand): present and projected conditions for 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 329-346, March.
    16. Jie Dang & Xuanmei Fan & Xin Wang & Zhenglin Li & Yangyang Leng, 2025. "Investigation of rock mass deformation through nap-of-the-object photogrammetry: a case study of Hongyun Golden Peak in Fanjing Mountain, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(6), pages 7761-7782, April.
    17. Farzaneh Noroozi & Gholamabbas Ghanbarian & Roja Safaeian & Hamid Reza Pourghasemi, 2024. "Forest fire mapping: a comparison between GIS-based random forest and Bayesian models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6569-6592, May.
    18. Edris Alam & Fahim Sufi & Abu Reza Md. Towfiqul Islam, 2023. "A Scenario-Based Case Study: Using AI to Analyze Casualties from Landslides in Chittagong Metropolitan Area, Bangladesh," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    19. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    20. Jae-Hyeon Park & Seong-Gyun Park & Hyun Kim, 2022. "Applicability Evaluation of Landslide Vulnerability Criteria for Decision on Landcreep-Vulnerable Areas in South Korea," Sustainability, MDPI, vol. 14(8), pages 1-16, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:3:d:10.1007_s11069-023-06092-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.