IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i3d10.1007_s11069-023-05948-5.html
   My bibliography  Save this article

Analysis of seismic damage of a highway bridge during the 2021 Ms 7.4 earthquake in Maduo County, China

Author

Listed:
  • Wanpeng Ding

    (Nanjing Tech University)

  • Zhijian Wu

    (Nanjing Tech University
    Jiangsu Provience Engineering Research Center of Transportation Infrastructure Security Technology)

  • Beilei Zhan

    (Qinghai Earthquake Agency)

  • Jian Liu

    (Nanjing Tech University)

  • Jun Bi

    (Nanjing Tech University)

Abstract

On May 22, 2021, a 7.4 magnitude earthquake struck Maduo County (34.59° N, 98.34° E), Qinghai Province, China, with a focal depth of 17 km. The earthquake occurred near the northern boundary of the Bayan Har block. Two highway bridges, including the Yematan bridge, collapsed. Based on the analysis of the seismic damage characteristics of the Yematan bridge, a finite element model of a three-span simply supported girder bridge was established. Nonlinear analyses were performed using the bedrock wave at the bridge site during the earthquake and the seismic safety evaluation wave of the bridge as inputs to analyze the causes of seismic damage of the bridge. The results show that the large beam displacement owing to the velocity pulse and the low-frequency components of ground motion are the main causes of the bridge damage.

Suggested Citation

  • Wanpeng Ding & Zhijian Wu & Beilei Zhan & Jian Liu & Jun Bi, 2023. "Analysis of seismic damage of a highway bridge during the 2021 Ms 7.4 earthquake in Maduo County, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2419-2434, July.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:3:d:10.1007_s11069-023-05948-5
    DOI: 10.1007/s11069-023-05948-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05948-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05948-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chien-Kuo Chiu & Charles Poegoeh Arista, 2017. "Serviceability-related reliability for mainshock-damaged reinforced concrete piers considering the aftershock-induced seismic hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1333-1359, July.
    2. Süleyman Adanur & Ahmet Altunişik & Alemdar Bayraktar & Mehmet Akköse, 2012. "Comparison of near-fault and far-fault ground motion effects on geometrically nonlinear earthquake behavior of suspension bridges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 593-614, October.
    3. S. Turkan & G. Özel, 2014. "Modeling destructive earthquake casualties based on a comparative study for Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1093-1110, June.
    4. Nisrine Makhoul & Christopher Navarro & Jong Lee, 2018. "Earthquake damage estimations of Byblos potable water network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 627-659, September.
    5. Aiko Furukawa & Yutaka Ohta, 2009. "Failure process of masonry buildings during earthquake and associated casualty risk evaluation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 25-51, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soumya Gorai & Damodar Maity, 2021. "Numerical investigation on seismic behaviour of aged concrete gravity dams to near source and far source ground motions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 943-966, January.
    2. Sungsik Yoon & Young-Joo Lee & Hyung-Jo Jung, 2021. "Flow-based seismic risk assessment of a water transmission network employing probabilistic seismic hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1231-1254, January.
    3. Gaohui Wang & Sherong Zhang & Chao Wang & Mao Yu, 2014. "Seismic performance evaluation of dam-reservoir-foundation systems to near-fault ground motions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 651-674, June.
    4. Xinzheng Lu & Donglian Gu & Zhen Xu & Chen Xiong & Yuan Tian, 2020. "CIM-Powered Multi-Hazard Simulation Framework Covering both Individual Buildings and Urban Areas," Sustainability, MDPI, vol. 12(12), pages 1-28, June.
    5. Muhammet Gul & Ali Fuat Guneri, 2016. "An artificial neural network-based earthquake casualty estimation model for Istanbul city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2163-2178, December.
    6. Chaoxu Xia & Gaozhong Nie & Huayue Li & Xiwei Fan & Wenhua Qi, 2023. "A composite database of casualty-inducing earthquakes in mainland China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3321-3351, April.
    7. Xia Chaoxu & Nie Gaozhong & Fan Xiwei & Li Huayue & Zhou Junxue & Zeng Xun, 2022. "A new model for the quantitative assessment of earthquake casualties based on the correction of anti-lethal level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1199-1226, January.
    8. Özlem Çavdar, 2022. "Seismic performance of a high-rise building by using linear and nonlinear methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1359-1378, June.
    9. Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
    10. Xuejun Jiang & Yunxian Li & Aijun Yang & Ruowei Zhou, 2020. "Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk," Empirical Economics, Springer, vol. 58(5), pages 2085-2103, May.
    11. Manhao Luo & Shuangyun Peng & Yanbo Cao & Jing Liu & Bangmei Huang, 2023. "Earthquake fatality prediction based on hybrid feature importance assessment: a case study in Yunnan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3353-3376, April.
    12. Ali Ural & Adem Doğangün & Halil Sezen & Zekai Angın, 2012. "Seismic performance of masonry buildings during the 2007 Bala, Turkey earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1013-1026, February.
    13. Tongyan Zheng & Lei Li & Chong Xu & Yuandong Huang, 2023. "Spatiotemporal Analysis of Earthquake Distribution and Associated Losses in Chinese Mainland from 1949 to 2021," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    14. Li, Shuang & Zhai, Changhai & Xie, Lili, 2015. "Occupant evacuation and casualty estimation in a building under earthquake using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 152-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:3:d:10.1007_s11069-023-05948-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.