IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v115y2023i3d10.1007_s11069-022-05628-w.html
   My bibliography  Save this article

Indicators and participatory processes: a framework for assessing integrated climate vulnerability and risk as applied in Los Angeles County, California

Author

Listed:
  • Chloe S. Fleming

    (CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No. EA133C-14-NC-1384)

  • Seann D. Regan

    (CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No. EA133C-14-NC-1384)

  • Amy Freitag

    (NOAA National Centers for Coastal Ocean Science)

  • Heidi Burkart

    (CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No. EA133C-14-NC-1384)

Abstract

Climate vulnerability research is enhanced by stakeholder engagement as coastal communities are increasingly vulnerable to climate-driven impacts, yet these impacts are rarely evenly distributed across space and stakeholder feedback is not always well incorporated into the process. While often used in applied management applications, integrated spatially explicit assessments of multi-faceted vulnerability and hazard less commonly appear in the scientific literature, especially those that are transferable across geographies and risk metrics. Since many geographies lack an integrated, stakeholder-driven assessment of multiple hazards and vulnerabilities within the same assessment, scientists with the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science developed a transferable and integrated community vulnerability assessment framework (Framework) that relies primarily upon available secondary data and is supplemented with stakeholder-derived primary data. Using blended approaches in stakeholder engagement, we present the Framework’s six methodological steps as recently applied in Los Angeles County, California: iterative partner engagement, indicator and index development, vulnerability assessment, hazard assessment, risk assessment, and reengagement for adaptation action. We conclude that boundary-spanning organizations such as Sea Grant Extension programs can play a crucial role in participatory science and stakeholder needs assessments, and emphasize the need for continued stakeholder engagement in climate science.

Suggested Citation

  • Chloe S. Fleming & Seann D. Regan & Amy Freitag & Heidi Burkart, 2023. "Indicators and participatory processes: a framework for assessing integrated climate vulnerability and risk as applied in Los Angeles County, California," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2069-2095, February.
  • Handle: RePEc:spr:nathaz:v:115:y:2023:i:3:d:10.1007_s11069-022-05628-w
    DOI: 10.1007/s11069-022-05628-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05628-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05628-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Thomas & R. K. Jaiswal & Ravi Galkate & P. C. Nayak & N. C. Ghosh, 2016. "Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in central India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1627-1652, April.
    2. Kerstin Krellenberg & Juliane Welz, 2017. "Assessing Urban Vulnerability in the Context of Flood and Heat Hazard: Pathways and Challenges for Indicator-Based Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 132(2), pages 709-731, June.
    3. Laurie Pearce, 2003. "Disaster Management and Community Planning, and Public Participation: How to Achieve Sustainable Hazard Mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(2), pages 211-228, March.
    4. Yingchun Li & Wei Xiong & Wei Hu & Pam Berry & Hui Ju & Erda Lin & Wen Wang & Kuo Li & Jie Pan, 2015. "Integrated assessment of China’s agricultural vulnerability to climate change: a multi-indicator approach," Climatic Change, Springer, vol. 128(3), pages 355-366, February.
    5. Gopnik, Morgan & Fieseler, Clare & Cantral, Laura & McClellan, Kate & Pendleton, Linwood & Crowder, Larry, 2012. "Coming to the table: Early stakeholder engagement in marine spatial planning," Marine Policy, Elsevier, vol. 36(5), pages 1139-1149.
    6. Gabriela Noriega & Lisa Ludwig, 2012. "Social vulnerability assessment for mitigation of local earthquake risk in Los Angeles County," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1341-1355, November.
    7. Alexander Fekete & Marion Damm & Jörn Birkmann, 2010. "Scales as a challenge for vulnerability assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(3), pages 729-747, December.
    8. Seth E. Spielman & Joseph Tuccillo & David C. Folch & Amy Schweikert & Rebecca Davies & Nathan Wood & Eric Tate, 2020. "Evaluating social vulnerability indicators: criteria and their application to the Social Vulnerability Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 417-436, January.
    9. Hung-Chih Hung & Ling-Yeh Chen, 2013. "Incorporating stakeholders’ knowledge into assessing vulnerability to climatic hazards: application to the river basin management in Taiwan," Climatic Change, Springer, vol. 120(1), pages 491-507, September.
    10. X.-Z. Xu & Z.-Y. Liu & W.-L. Wang & H.-W. Zhang & Q. Yan & C. Zhao & W.-Z. Guo, 2015. "Which is more hazardous: avalanche, landslide, or mudslide?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1939-1945, April.
    11. Paul William Kojo Yankson & Alex Barimah Owusu & George Owusu & John Boakye-Danquah & Jacob Doku Tetteh, 2017. "Assessment of coastal communities’ vulnerability to floods using indicator-based approach: a case study of Greater Accra Metropolitan Area, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 661-689, November.
    12. Sven Fuchs & Christian Kuhlicke & Volker Meyer, 2011. "Editorial for the special issue: vulnerability to natural hazards—the challenge of integration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 609-619, August.
    13. Anne Holsten & Jürgen Kropp, 2012. "An integrated and transferable climate change vulnerability assessment for regional application," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 1977-1999, December.
    14. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    15. Paul William Kojo Yankson & Alex Barimah Owusu & George Owusu & John Boakye-Danquah & Jacob Doku Tetteh, 2017. "Erratum to: Assessment of coastal communities’ vulnerability to floods using indicator-based approach: a case study of Greater Accra Metropolitan Area, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 691-691, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sasenarine Tomby & Jing Zhang, 2019. "Vulnerability assessment of Guyanese sugar to floods," Climatic Change, Springer, vol. 154(1), pages 179-193, May.
    2. Daystar Babanawo & Precious Agbeko D. Mattah & Samuel K. M. Agblorti & Emmanuel K. Brempong & Memuna Mawusi Mattah & Denis Worlanyo Aheto, 2022. "Local Indicator-Based Flood Vulnerability Indices and Predictors of Relocation in the Ketu South Municipal Area of Ghana," Sustainability, MDPI, vol. 14(9), pages 1-26, May.
    3. Tugkan Tanir & Andre de Souza de Lima & Gustavo A. Coelho & Sukru Uzun & Felicio Cassalho & Celso M. Ferreira, 2021. "Assessing the spatiotemporal socioeconomic flood vulnerability of agricultural communities in the Potomac River Watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 225-251, August.
    4. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    5. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    6. Alexander Fekete, 2012. "Spatial disaster vulnerability and risk assessments: challenges in their quality and acceptance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1161-1178, April.
    7. Seunghoo Jeong & D. K. Yoon, 2018. "Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    8. Zachary T. Goodman & Caitlin A. Stamatis & Justin Stoler & Christopher T. Emrich & Maria M. Llabre, 2021. "Methodological challenges to confirmatory latent variable models of social vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2731-2749, April.
    9. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    10. Md. Nawrose Fatemi & Seth Asare Okyere & Stephen Kofi Diko & Michihiro Kita & Motoki Shimoda & Shigeki Matsubara, 2020. "Physical Vulnerability and Local Responses to Flood Damage in Peri-Urban Areas of Dhaka, Bangladesh," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    11. Divya Saini & Omvir Singh & Tejpal Sharma & Pankaj Bhardwaj, 2022. "Geoinformatics and analytic hierarchy process based drought vulnerability assessment over a dryland ecosystem of north-western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1427-1454, November.
    12. R. L. Ciurean & H. Hussin & C. J. Westen & M. Jaboyedoff & P. Nicolet & L. Chen & S. Frigerio & T. Glade, 2017. "Multi-scale debris flow vulnerability assessment and direct loss estimation of buildings in the Eastern Italian Alps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 929-957, January.
    13. Christian Geiß & Hannes Taubenböck, 2013. "Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 7-48, August.
    14. Blake Walker & Cameron Taylor-Noonan & Alan Tabbernor & T’Brenn McKinnon & Harsimran Bal & Dan Bradley & Nadine Schuurman & John Clague, 2014. "A multi-criteria evaluation model of earthquake vulnerability in Victoria, British Columbia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1209-1222, November.
    15. Nicolás C. Bronfman & Paula B. Repetto & Nikole Guerrero & Javiera V. Castañeda & Pamela C. Cisternas, 2021. "Temporal evolution in social vulnerability to natural hazards in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1757-1784, June.
    16. Kerstin Krellenberg & Juliane Welz, 2017. "Assessing Urban Vulnerability in the Context of Flood and Heat Hazard: Pathways and Challenges for Indicator-Based Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 132(2), pages 709-731, June.
    17. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    18. Daminda Solangaarachchi & Amy Griffin & Michael Doherty, 2012. "Social vulnerability in the context of bushfire risk at the urban-bush interface in Sydney: a case study of the Blue Mountains and Ku-ring-gai local council areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1873-1898, November.
    19. Margherita Righini & Ignacio Gatti & Andrea Taramelli & Marcello Arosio & Emiliana Valentini & Serena Sapio & Emma Schiavon, 2024. "Integrated Flood Impact and Vulnerability Assessment Using a Multi-Sensor Earth Observation Mission with the Perspective of an Operational Service in Lombardy, Italy," Land, MDPI, vol. 13(2), pages 1-26, January.
    20. Eric Tate & Md Asif Rahman & Christopher T. Emrich & Christopher C. Sampson, 2021. "Flood exposure and social vulnerability in the United States," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 435-457, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:115:y:2023:i:3:d:10.1007_s11069-022-05628-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.