IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v112y2022i2d10.1007_s11069-022-05220-2.html
   My bibliography  Save this article

Ecohydrology and flood risk management under climate vulnerability in relation to the sustainable development goals (SDGs): a case study in Nagaa Mobarak Village, Egypt

Author

Listed:
  • Marwa M. Aly

    (Helwan University)

  • Neveen H. Refay

    (Badr University in Cairo (BUC))

  • Hoda Elattar

    (University of Twente)

  • Karim M. Morsy

    (Ministry of Environment)

  • Erick R. Bandala

    (Desert Research Institute)

  • Samir A. Zein

    (Helwan University)

  • Mohamed K. Mostafa

    (Badr University in Cairo (BUC))

Abstract

This article aims to provide a thorough assessment of water quality and quantity incorporating the estimation of future patterns as a result of climate change from economic, environmental and social perspectives. Its scope extends from studying the physical parameters and rainfall patterns to maintaining an environmental flow with a better water quality using ecohydrological techniques. The village of Nagaa Mobarak in Souhag, Egypt, is taken as a case study being in a critical location that is vulnerable to flash floods. This paper managed to quantify change in water quantity and quality due to the impacts of flash floods and climate change. Several traditional engineering alternatives are proposed for flood management such as constructing a dam, a storage pond and a routing channel to the nearest water body; as well as non-traditional ecohydrological alternatives such as constructing a dam with vegetated foreshore, natural levees and constructed wetlands. The results of applying these methods for our case study showed that a hybrid solution that employs both traditional and non-traditional solutions for flood management is optimal. A constructed wetland along a section of the constructed channel for diverting flow into the Nagaa Hammade Canal would decrease the runoff volume and peak time so that the capacity of the Canal is not exceeded in a flood event and purifies the incoming stormwater improving its quality and the health of the ecosystem within the canal. Moreover, our proposed approach was investigated and found to target 10 out of the 17 UN SDGs.

Suggested Citation

  • Marwa M. Aly & Neveen H. Refay & Hoda Elattar & Karim M. Morsy & Erick R. Bandala & Samir A. Zein & Mohamed K. Mostafa, 2022. "Ecohydrology and flood risk management under climate vulnerability in relation to the sustainable development goals (SDGs): a case study in Nagaa Mobarak Village, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1107-1135, June.
  • Handle: RePEc:spr:nathaz:v:112:y:2022:i:2:d:10.1007_s11069-022-05220-2
    DOI: 10.1007/s11069-022-05220-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05220-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05220-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaveh Ostad-Ali-Askari & Mohammad Shayannejad, 2021. "Quantity and quality modelling of groundwater to manage water resources in Isfahan-Borkhar Aquifer," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15943-15959, November.
    2. Marina Baldi & Doaa Amin & Islam Sabry Al Zayed & Giovannangelo Dalu, 2020. "Climatology and Dynamical Evolution of Extreme Rainfall Events in the Sinai Peninsula—Egypt," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    3. Mojtaba Pirnazar & Hafez Hasheminasab & Arash Zand Karimi & Kaveh Ostad-Ali-Askari & Zahra Ghasemi & Majedeh Haeri-Hamedani & Elham Mohri-Esfahani & Saeid Eslamian, 2018. "The evaluation of the usage of the fuzzy algorithms in increasing the accuracy of the extracted land use maps," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 17(4), pages 307-321.
    4. Bolund, Per & Hunhammar, Sven, 1999. "Ecosystem services in urban areas," Ecological Economics, Elsevier, vol. 29(2), pages 293-301, May.
    5. Alexandros I. Stefanakis, 2019. "The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hüseyin Akay, 2022. "Towards Linking the Sustainable Development Goals and a Novel-Proposed Snow Avalanche Susceptibility Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6205-6222, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Yang & Zhi Zhang & Weikang Zhang & Tong Zhang & Huan Meng & Hongwei Yan & Yue Shen & Zeqian Li & Xiaotian Ma, 2023. "Wetland Park Planning and Management Based on the Valuation of Ecosystem Services: A Case Study of the Tieling Lotus Lake National Wetland Park (LLNWP), China," IJERPH, MDPI, vol. 20(4), pages 1-26, February.
    2. Posadas, A. & Morales, J. & Ibañez, J.M. & Posadas-Garzon, A., 2021. "Shaking earth: Non-linear seismic processes and the second law of thermodynamics: A case study from Canterbury (New Zealand) earthquakes," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Rohallah Fattahi Nafchi & Hamid Raeisi Vanani & Kobra Noori Pashaee & Hosein Samadi Brojeni & Kaveh Ostad-Ali-Askari, 2022. "Investigation on the effect of inclined crest step pool on scouring protection in erodible river beds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1495-1505, February.
    4. Goran Krsnik & Sonia Reyes-Paecke & Keith M. Reynolds & Jordi Garcia-Gonzalo & José Ramón González Olabarria, 2023. "Assessing Relativeness in the Provision of Urban Ecosystem Services: Better Comparison Methods for Improved Well-Being," Land, MDPI, vol. 12(5), pages 1-16, May.
    5. Gaodi Xie & Wenhui Chen & Shuyan Cao & Chunxia Lu & Yu Xiao & Changshun Zhang & Na Li & Shuo Wang, 2014. "The Outward Extension of an Ecological Footprint in City Expansion: The Case of Beijing," Sustainability, MDPI, vol. 6(12), pages 1-16, December.
    6. P. Hlaváčková & D. Šafařík, 2016. "Quantification of the utility value of the recreational function of forests from the aspect of valuation practice," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 62(8), pages 345-356.
    7. Alexander V. Rusanov, 2019. "Dacha dwellers and gardeners: garden plots and second homes in Europe and Russia," Population and Economics, ARPHA Platform, vol. 3(1), pages 107-124, April.
    8. Hui, Ling Chui & Jim, C.Y., 2022. "Urban-greenery demands are affected by perceptions of ecosystem services and disservices, and socio-demographic and environmental-cultural factors," Land Use Policy, Elsevier, vol. 120(C).
    9. Mahsa Mesgar & Diego Ramirez-Lovering & Mohamed El-Sioufi, 2021. "Tension, Conflict, and Negotiability of Land for Infrastructure Retrofit Practices in Informal Settlements," Land, MDPI, vol. 10(12), pages 1-15, November.
    10. Monika Kopecká & Daniel Szatmári & Konštantín Rosina, 2017. "Analysis of Urban Green Spaces Based on Sentinel-2A: Case Studies from Slovakia," Land, MDPI, vol. 6(2), pages 1-17, April.
    11. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    12. Hector Diaz & Bruno Mazzorana & Bernhard Gems & Ivan Rojas & Nicole Santibañez & Pablo Iribarren & Mario Pino & Andrés Iroumé, 2022. "What do biphasic flow experiments reveal on the variability of exposure on alluvial fans and which implications for risk assessment result from this?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 3099-3120, April.
    13. Ahmet Tolunay & Çağlar Başsüllü, 2015. "Willingness to Pay for Carbon Sequestration and Co-Benefits of Forests in Turkey," Sustainability, MDPI, vol. 7(3), pages 1-27, March.
    14. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    15. Massoni, Emma Soy & Barton, David N. & Rusch, Graciela M. & Gundersen, Vegard, 2018. "Bigger, more diverse and better? Mapping structural diversity and its recreational value in urban green spaces," Ecosystem Services, Elsevier, vol. 31(PC), pages 502-516.
    16. Somajita Paul & Harini Nagendra, 2017. "Factors Influencing Perceptions and Use of Urban Nature: Surveys of Park Visitors in Delhi," Land, MDPI, vol. 6(2), pages 1-23, April.
    17. Bo Yang & Ming-Han Li & Shujuan Li, 2013. "Design-with-Nature for Multifunctional Landscapes: Environmental Benefits and Social Barriers in Community Development," IJERPH, MDPI, vol. 10(11), pages 1-26, October.
    18. Dennis, Matthew & James, Philip, 2017. "Ecosystem services of collectively managed urban gardens: Exploring factors affecting synergies and trade-offs at the site level," Ecosystem Services, Elsevier, vol. 26(PA), pages 17-26.
    19. Gregg C. Brill & Pippin M. L. Anderson & Patrick O’Farrell, 2022. "Relational Values of Cultural Ecosystem Services in an Urban Conservation Area: The Case of Table Mountain National Park, South Africa," Land, MDPI, vol. 11(5), pages 1-28, April.
    20. Donatella Valente & María Victoria Marinelli & Erica Maria Lovello & Cosimo Gaspare Giannuzzi & Irene Petrosillo, 2022. "Fostering the Resiliency of Urban Landscape through the Sustainable Spatial Planning of Green Spaces," Land, MDPI, vol. 11(3), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:112:y:2022:i:2:d:10.1007_s11069-022-05220-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.