IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v105y2021i1d10.1007_s11069-020-04345-6.html
   My bibliography  Save this article

Multi-scenario flash flood hazard assessment based on rainfall–runoff modeling and flood inundation modeling: a case study

Author

Listed:
  • Yue Zhang

    (Beijing Normal University
    Beijing Normal University)

  • Ying Wang

    (Beijing Normal University
    Beijing Normal University)

  • Yunxia Zhang

    (National Disaster Reduction Center of China)

  • Qingzu Luan

    (Beijing Municipal Climate Center)

  • Heping Liu

    (Hydrology Bureau of Liaoning Province)

Abstract

Flash flooding is one of the most devastating natural disasters in China. A quantitative flash flood hazard assessment is important for saving human lives and reducing economic losses. In this study, integrated rainfall–runoff modeling (HEC-HMS) and hydraulic modeling (FLO-2D) schemes were used to assess flash flood inundation areas and depths under 5-year, 10-year, 25-year, 50-year, 100-year, 200-year, 500-year and 1000-year rainfall scenarios in a mountainous basin (Hadahe River Basin, HRB) in northern China. The overall flash flood hazard in HRB is high. Under the eight rainfall scenarios, the total flooded area ranged from 6 to 8.73 km2; the flash flood inundation areas with depths of 1–2 m, 2–3 m, and over 3 m was 1.53–2.69 km2, 0.63–1.44 km2 and 0.33–1.11 km2, respectively; and these areas accounted for 25.5–30.8%, 10.5–16.5% and 5.5–12.7% of the whole flooded area. The total flooded area increases rapidly with the return period increasing from 5 to 200 years, and the increase gradient slows when the return period is greater than 200 years. In the downstream area of HRB, the flash flood area with inundation depths greater than 1 m accounted for 54–71% of the flooded area under the eight scenarios. In comparison to other areas in the HRB, the downstream area is at the highest risk given its extensive inundation and substantial property exposure. The quantitative hazard assessment framework presented in this study can be applied in other mountainous basins for flash flood defense and disaster management purposes.

Suggested Citation

  • Yue Zhang & Ying Wang & Yunxia Zhang & Qingzu Luan & Heping Liu, 2021. "Multi-scenario flash flood hazard assessment based on rainfall–runoff modeling and flood inundation modeling: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 967-981, January.
  • Handle: RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04345-6
    DOI: 10.1007/s11069-020-04345-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04345-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04345-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Razmi & Saeed Golian & Zahra Zahmatkesh, 2017. "Non-Stationary Frequency Analysis of Extreme Water Level: Application of Annual Maximum Series and Peak-over Threshold Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2065-2083, May.
    2. Muhammad Masood & Kuniyoshi Takeuchi, 2012. "Assessment of flood hazard, vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 757-770, March.
    3. S. Jonkman, 2005. "Global Perspectives on Loss of Human Life Caused by Floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(2), pages 151-175, February.
    4. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mel Oliveira Guirro & Gean Paulo Michel, 2023. "Hydrological and hydrodynamic reconstruction of a flood event in a poorly monitored basin: a case study in the Rolante River, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 723-743, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    2. Guozhen Wei & Wei Ding & Guohua Liang & Bin He & Jian Wu & Rui Zhang & Huicheng Zhou, 2022. "A New Framework Based on Data-Based Mechanistic Model and Forgetting Mechanism for Flood Forecast," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3591-3607, August.
    3. Enes Yildirim & Ibrahim Demir, 2019. "An integrated web framework for HAZUS-MH flood loss estimation analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 275-286, October.
    4. Roland Azibo Balgah & Kester Azibo Ngwa & Gertrud Rosa Buchenrieder & Jude Ndzifon Kimengsi, 2023. "Impacts of Floods on Agriculture-Dependent Livelihoods in Sub-Saharan Africa: An Assessment from Multiple Geo-Ecological Zones," Land, MDPI, vol. 12(2), pages 1-18, January.
    5. Hefei Huang & Huijuan Cui & Quansheng Ge, 2021. "Assessment of potential risks induced by increasing extreme precipitation under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2059-2079, September.
    6. Qiwei Yu & Alexis K. H. Lau & Kang T. Tsang & Jimmy C. H. Fung, 2018. "Human damage assessments of coastal flooding for Hong Kong and the Pearl River Delta due to climate change-related sea level rise in the twenty-first century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1011-1038, June.
    7. Farahmand, Hamed & Liu, Xueming & Dong, Shangjia & Mostafavi, Ali & Gao, Jianxi, 2022. "A Network Observability Framework for Sensor Placement in Flood Control Networks to Improve Flood Situational Awareness and Risk Management," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Yi He & Desmond Manful & Rachel Warren & Nicole Forstenhäusler & Timothy J. Osborn & Jeff Price & Rhosanna Jenkins & Craig Wallace & Dai Yamazaki, 2022. "Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries," Climatic Change, Springer, vol. 170(1), pages 1-21, January.
    9. Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
    10. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    11. Wang, Yutao & Sun, Mingxing & Song, Baimin, 2017. "Public perceptions of and willingness to pay for sponge city initiatives in China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 11-20.
    12. Xin Wen & Ana María Alarcón Ferreira & Lynn M. Rae & Hirmand Saffari & Zafar Adeel & Laura A. Bakkensen & Karla M. Méndez Estrada & Gregg M. Garfin & Renee A. McPherson & Ernesto Franco Vargas, 2022. "A Comprehensive Methodology for Evaluating the Economic Impacts of Floods: An Application to Canada, Mexico, and the United States," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    13. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.
    14. Rebecca E. Morss & Julie L. Demuth & Ann Bostrom & Jeffrey K. Lazo & Heather Lazrus, 2015. "Flash Flood Risks and Warning Decisions: A Mental Models Study of Forecasters, Public Officials, and Media Broadcasters in Boulder, Colorado," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2009-2028, November.
    15. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    16. Mook Bangalore & Andrew Smith & Ted Veldkamp, 2019. "Exposure to Floods, Climate Change, and Poverty in Vietnam," Economics of Disasters and Climate Change, Springer, vol. 3(1), pages 79-99, April.
    17. Tran, Thi Xuyen, 2021. "Typhoon and Agricultural Production Portfolio -Empirical Evidence for a Developing Economy," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242411, Verein für Socialpolitik / German Economic Association.
    18. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    19. Dilshad Ahmad & Muhammad Afzal, 2021. "Impact of climate change on pastoralists’ resilience and sustainable mitigation in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11406-11426, August.
    20. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04345-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.