Robust estimation and diagnostic of generalized linear model for insurance losses: a weighted likelihood approach
Author
Abstract
Suggested Citation
DOI: 10.1007/s00184-024-00952-6
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Tsz Chai Fung & George Tzougas & Mario V. Wüthrich, 2023. "Mixture Composite Regression Models with Multi-type Feature Selection," North American Actuarial Journal, Taylor & Francis Journals, vol. 27(2), pages 396-428, April.
- Fung, Tsz Chai, 2022. "Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 180-198.
- Blostein, Martin & Miljkovic, Tatjana, 2019. "On modeling left-truncated loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 35-46.
- Zhao, Qian & Brazauskas, Vytaras & Ghorai, Jugal, 2018. "Robust And Efficient Fitting Of Severity Models And The Method Of Winsorized Moments," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 275-309, January.
- William H. Aeberhard & Eva Cantoni & Stephane Heritier, 2014. "Robust inference in the negative binomial regression model with an application to falls data," Biometrics, The International Biometric Society, vol. 70(4), pages 920-931, December.
- Vytaras Brazauskas & Robert Serfling, 2000. "Robust and Efficient Estimation of the Tail Index of a Single-Parameter Pareto Distribution," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(4), pages 12-27.
- Tsz Chai Fung & Andrei L. Badescu & X. Sheldon Lin, 2022. "Fitting Censored and Truncated Regression Data Using the Mixture of Experts Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(4), pages 496-520, November.
- Robert Serfling, 2002. "Efficient and Robust Fitting of Lognormal Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 6(4), pages 95-109.
- Brazauskas, Vytaras & Serfling, Robert, 2003. "Favorable Estimators for Fitting Pareto Models: A Study Using Goodness-of-fit Measures with Actual Data," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 365-381, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fung, Tsz Chai, 2022. "Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 180-198.
- Milan Stehlík & Rastislav Potocký & Helmut Waldl & Zdeněk Fabián, 2010. "On the favorable estimation for fitting heavy tailed data," Computational Statistics, Springer, vol. 25(3), pages 485-503, September.
- Brazauskas, Vytaras, 2003. "Influence functions of empirical nonparametric estimators of net reinsurance premiums," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 115-133, February.
- Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Distributional properties," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 56-68.
- Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.
- Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
- Igor Fedotenkov, 2020.
"A Review of More than One Hundred Pareto-Tail Index Estimators,"
Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
- Fedotenkov, Igor, 2018. "A review of more than one hundred Pareto-tail index estimators," MPRA Paper 90072, University Library of Munich, Germany.
- Alfio Marazzi, 2021. "Improving the Efficiency of Robust Estimators for the Generalized Linear Model," Stats, MDPI, vol. 4(1), pages 1-20, February.
- Kundan Singh & Amulya Kumar Mahto & Yogesh Mani Tripathi & Liang Wang, 2024. "Estimation in a multicomponent stress-strength model for progressive censored lognormal distribution," Journal of Risk and Reliability, , vol. 238(3), pages 622-642, June.
- Hou, Yanxi & Li, Jiahong & Gao, Guangyuan, 2025. "Insurance loss modeling with gradient tree-boosted mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 121(C), pages 45-62.
- Frederico Caeiro & Ayana Mateus, 2023. "A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
- Brazauskas, Vytaras & Kleefeld, Andreas, 2009. "Robust and efficient fitting of the generalized Pareto distribution with actuarial applications in view," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 424-435, December.
- Bernhard Klar, 2025. "A Pareto Tail Plot Without Moment Restrictions," The American Statistician, Taylor & Francis Journals, vol. 79(2), pages 156-166, April.
- Aeberhard, William H. & Cantoni, Eva & Heritier, Stephane, 2017. "Saddlepoint tests for accurate and robust inference on overdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 162-175.
- Jan Beran & Dieter Schell & Milan Stehlík, 2014. "The harmonic moment tail index estimator: asymptotic distribution and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 193-220, February.
- Richard S. J. Tol, 2024.
"The climate niche of Homo Sapiens,"
Climatic Change, Springer, vol. 177(6), pages 1-17, June.
- Richard S. J. Tol, 2023. "The climate niche of Homo Sapiens," Working Paper Series 0223, Department of Economics, University of Sussex Business School.
- Sebastian Calcetero-Vanegas & Andrei L. Badescu & X. Sheldon Lin, 2023. "Claim Reserving via Inverse Probability Weighting: A Micro-Level Chain-Ladder Method," Papers 2307.10808, arXiv.org, revised Jun 2024.
- Peter Congdon, 2017. "Quantile regression for overdispersed count data: a hierarchical method," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-19, December.
- L. Ndwandwe & J. S. Allison & L. Santana & I. J. H. Visagie, 2023. "Testing for the Pareto type I distribution: a comparative study," METRON, Springer;Sapienza Università di Roma, vol. 81(2), pages 215-256, August.
- Xie, Fang & Xiao, Zhijie, 2020. "Consistency of ℓ1 penalized negative binomial regressions," Statistics & Probability Letters, Elsevier, vol. 165(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:88:y:2025:i:2:d:10.1007_s00184-024-00952-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.