IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v4y2002i3d10.1023_a1022533817579.html
   My bibliography  Save this article

On the Lévy Measure of the Lognormal and the LogCauchy Distributions

Author

Listed:
  • Lennart Bondesson

    (Umeaå University)

Abstract

The densities of the Lévy measure and the Thorin measure of the standard lognormal distribution are approximated and presented in graphs. Moreover, the behavior of these densities at 0 and ∞ is studied. Laplace and saddlepoint approximations are used. The infinite divisibility of the standard logCauchy distribution is given some attention in passing.

Suggested Citation

  • Lennart Bondesson, 2002. "On the Lévy Measure of the Lognormal and the LogCauchy Distributions," Methodology and Computing in Applied Probability, Springer, vol. 4(3), pages 243-256, September.
  • Handle: RePEc:spr:metcap:v:4:y:2002:i:3:d:10.1023_a:1022533817579
    DOI: 10.1023/A:1022533817579
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022533817579
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022533817579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steutel, F. W., 1973. "Some recent results in infinite divisibility," Stochastic Processes and their Applications, Elsevier, vol. 1(2), pages 125-143, April.
    2. Bondesson, Lennart & Kristiansen, Gundorph K. & Steutel, Fred W., 1996. "Infinite divisibility of random variables and their integer parts," Statistics & Probability Letters, Elsevier, vol. 28(3), pages 271-278, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toshiro Watanabe, 2022. "Second-Order Behaviour for Self-Decomposable Distributions with Two-Sided Regularly Varying Densities," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1343-1366, June.
    2. Toshiro Watanabe & Kouji Yamamuro, 2010. "Local Subexponentiality and Self-decomposability," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1039-1067, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph, Gerd & Schreiber, Karina, 2000. "Scaled Sibuya distribution and discrete self-decomposability," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 181-187, June.
    2. Baeumer, B. & Meerschaert, M.M., 2007. "Fractional diffusion with two time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 237-251.
    3. Kei Kobayashi, 2011. "Stochastic Calculus for a Time-Changed Semimartingale and the Associated Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 24(3), pages 789-820, September.
    4. Lennart Bondesson, 2015. "A Class of Probability Distributions that is Closed with Respect to Addition as Well as Multiplication of Independent Random Variables," Journal of Theoretical Probability, Springer, vol. 28(3), pages 1063-1081, September.
    5. Kreer, Markus & Kizilersu, Ayse & Thomas, Anthony W., 2024. "When is the discrete Weibull distribution infinitely divisible?," Statistics & Probability Letters, Elsevier, vol. 215(C).
    6. Geng, Xi & Xia, Aihua, 2022. "When is the Conway–Maxwell–Poisson distribution infinitely divisible?," Statistics & Probability Letters, Elsevier, vol. 181(C).
    7. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    8. Mijena, Jebessa B. & Nane, Erkan, 2014. "Correlation structure of time-changed Pearson diffusions," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 68-77.
    9. Browne, Sid & Bunge, John, 1995. "Random record processes and state dependent thinning," Stochastic Processes and their Applications, Elsevier, vol. 55(1), pages 131-142, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:4:y:2002:i:3:d:10.1023_a:1022533817579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.