IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v26y2024i3d10.1007_s11009-024-10102-0.html
   My bibliography  Save this article

Ruin Probabilities as Recurrence Sequences in a Discrete-Time Risk Process

Author

Listed:
  • Ernesto Cruz

    (Facultad de Ciencias, UNAM)

  • Luis Rincón

    (Facultad de Ciencias, UNAM)

  • David J. Santana

    (UJAT, México)

Abstract

The theory of linear recurrence sequences is applied to obtain an explicit formula for the ultimate ruin probability in a discrete-time risk process. It is assumed that the claims distribution is arbitrary but has finite support $$\varvec{\{0,1,\ldots ,m+1\}}$$ { 0 , 1 , … , m + 1 } , for some integer $$\varvec{m\ge 1}$$ m ≥ 1 . The method requires finding the zeroes of an m degree polynomial and solving a system of m linear equations. An approximation is derived and some numerical results and plots are provided as examples.

Suggested Citation

  • Ernesto Cruz & Luis Rincón & David J. Santana, 2024. "Ruin Probabilities as Recurrence Sequences in a Discrete-Time Risk Process," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-16, September.
  • Handle: RePEc:spr:metcap:v:26:y:2024:i:3:d:10.1007_s11009-024-10102-0
    DOI: 10.1007/s11009-024-10102-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-024-10102-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-024-10102-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helena Jasiulewicz & Wojciech Kordecki, 2015. "Ruin probability of a discrete-time risk process with proportional reinsurance and investment for exponential and Pareto distributions," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 25(3), pages 17-38.
    2. Helena Jasiulewicz & Wojciech Kordecki, 2013. "Ruin probability of a discrete-time risk process with proportional reinsurance and investment for exponential and Pareto distributions," Papers 1306.3479, arXiv.org, revised Mar 2015.
    3. Gerber, Hans U., 1988. "Mathematical Fun with the Compound Binomial Process," ASTIN Bulletin, Cambridge University Press, vol. 18(2), pages 161-168, November.
    4. Yang, Hu & Zhang, Zhimin & Lan, Chunmei, 2009. "Ruin problems in a discrete Markov risk model," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 21-28, January.
    5. Sun, L. & Yang, H., 2003. "Ruin Theory in a Discrete Time Risk Model with Interest Income," British Actuarial Journal, Cambridge University Press, vol. 9(3), pages 637-652, August.
    6. Cossette, Hélène & Marceau, Etienne & Maume-Deschamps, Véronique, 2010. "Discrete-Time Risk Models Based on Time Series for Count Random Variables," ASTIN Bulletin, Cambridge University Press, vol. 40(1), pages 123-150, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekaterina Bulinskaya & Boris Shigida, 2021. "Discrete-Time Model of Company Capital Dynamics with Investment of a Certain Part of Surplus in a Non-Risky Asset for a Fixed Period," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 103-121, March.
    2. Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.
    3. Yang, Hu & Zhang, Zhimin & Lan, Chunmei, 2009. "Ruin problems in a discrete Markov risk model," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 21-28, January.
    4. Boris Aleksandrov & Christian H. Weiß, 2020. "Parameter estimation and diagnostic tests for INMA(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 196-232, March.
    5. Li, Shuanming & Garrido, José, 2002. "On the time value of ruin in the discrete time risk model," DEE - Working Papers. Business Economics. WB wb021812, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    6. Cheng, Shixue & Gerber, Hans U. & Shiu, Elias S. W., 2000. "Discounted probabilities and ruin theory in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 239-250, May.
    7. Bao, Zhenhua & Song, Lixin & Liu, He, 2013. "A note on the inflated-parameter binomial distribution," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1911-1914.
    8. De Vylder, F. E. & Goovaerts, M. J., 1999. "Inequality extensions of Prabhu's formula in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 249-271, May.
    9. Xiang Hu & Lianzeng Zhang, 2016. "Ruin Probability in a Correlated Aggregate Claims Model with Common Poisson Shocks: Application to Reinsurance," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 675-689, September.
    10. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    11. Cindy Courtois & Michel Denuit, 2009. "Moment Bounds on Discrete Expected Stop-Loss Transforms, with Applications," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 307-338, September.
    12. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    13. Cossette, Helene & Landriault, David & Marceau, Etienne, 2004. "Exact expressions and upper bound for ruin probabilities in the compound Markov binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 449-466, June.
    14. David Landriault, 2008. "On a generalization of the expected discounted penalty function in a discrete‐time insurance risk model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(6), pages 525-539, November.
    15. Denuit, Michel & Lefevre, Claude, 1997. "Some new classes of stochastic order relations among arithmetic random variables, with applications in actuarial sciences," Insurance: Mathematics and Economics, Elsevier, vol. 20(3), pages 197-213, October.
    16. Liu, Guoxin & Wang, Ying & Zhang, Bei, 2005. "Ruin probability in the continuous-time compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 303-316, June.
    17. S. X. Liu & J. Y. Guo, 2006. "Discrete Risk Model Revisited," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 303-313, June.
    18. Chang, Carolyn W. & Chang, Jack S.K. & Lu, WeiLi, 2008. "Pricing catastrophe options in discrete operational time," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 422-430, December.
    19. Cossette, Helene & Landriault, David & Marceau, Etienne, 2006. "Ruin probabilities in the discrete time renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 309-323, April.
    20. Chang, Carolyn W. & Chang, Jack S.K. & Lu, WeLi, 2010. "Pricing catastrophe options with stochastic claim arrival intensity in claim time," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 24-32, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:26:y:2024:i:3:d:10.1007_s11009-024-10102-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.