IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v25y2023i4d10.1007_s11009-023-10064-9.html
   My bibliography  Save this article

Stochastic Dynamics of a Hybrid Delay Food Chain Model with Harvesting and Jumps in a Polluted Environment

Author

Listed:
  • Sheng Wang

    (Henan Polytechnic University)

  • Lijuan Dong

    (Henan Polytechnic University)

Abstract

In this paper, the stochastic dynamics of a hybrid delay food chain model with harvesting and Lévy jumps in a polluted environment is studied by using stochastic analysis techniques. Under some basic assumptions, criterions about stochastic persistence in mean and extinction of each species are established, as well as global attractivity and the existence of optimal harvesting strategy (OHS) of the system. The accurate expressions for the optimal harvesting effort (OHE) and the maximum of expectation of sustainable yield (MESY) are given. Our results show that the stochastic dynamics and OHS of the system are closely correlated with both time delays and environmental noises. Finally, some numerical simulations are introduced to illustrate the main results.

Suggested Citation

  • Sheng Wang & Lijuan Dong, 2023. "Stochastic Dynamics of a Hybrid Delay Food Chain Model with Harvesting and Jumps in a Polluted Environment," Methodology and Computing in Applied Probability, Springer, vol. 25(4), pages 1-31, December.
  • Handle: RePEc:spr:metcap:v:25:y:2023:i:4:d:10.1007_s11009-023-10064-9
    DOI: 10.1007/s11009-023-10064-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-023-10064-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-023-10064-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Xiaoling & Ma, Pengyu & Zhang, Liren & Lv, Jingliang, 2022. "Dynamic properties for a stochastic food chain model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Liu, Meng & Wang, Ke, 2009. "Survival analysis of stochastic single-species population models in polluted environments," Ecological Modelling, Elsevier, vol. 220(9), pages 1347-1357.
    3. Qiu, Hong & Deng, Wenmin, 2018. "Optimal harvesting of a stochastic delay competitive Lotka–Volterra model with Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 317(C), pages 210-222.
    4. Wang, Liang & Jiang, Daqing & Feng, Tao, 2022. "Threshold dynamics in a stochastic chemostat model under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    5. Yu, Jingyi & Liu, Meng, 2017. "Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 14-28.
    6. Liu, Meng & Bai, Chuanzhi, 2016. "Dynamics of a stochastic one-prey two-predator model with Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 308-321.
    7. Zhang, Xinhong & Li, Wenxue & Liu, Meng & Wang, Ke, 2015. "Dynamics of a stochastic Holling II one-predator two-prey system with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 571-582.
    8. Liu, Meng & Yu, Jingyi & Mandal, Partha Sarathi, 2018. "Dynamics of a stochastic delay competitive model with harvesting and Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 335-349.
    9. Liu, Guodong & Meng, Xinzhu, 2019. "Optimal harvesting strategy for a stochastic mutualism system in a polluted environment with regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    10. Alsakaji, Hebatallah J. & Kundu, Soumen & Rihan, Fathalla A., 2021. "Delay differential model of one-predator two-prey system with Monod-Haldane and holling type II functional responses," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    11. Liu, Meng & Deng, Meiling & Du, Bo, 2015. "Analysis of a stochastic logistic model with diffusion," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 169-182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng Wang & Lijuan Dong, 2024. "Dynamics of a Stochastic Regime-Switching Four-Species Food Chain Model with Distributed Delays and Harvesting," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-15, September.
    2. Liu, Chao & Xun, Xinying & Zhang, Guilai & Li, Yuanke, 2020. "Stochastic dynamics and optimal control in a hybrid bioeconomic system with telephone noise and Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Wang, Sheng & Hu, Guixin & Wei, Tengda & Wang, Linshan, 2020. "Permanence of hybrid competitive Lotka–Volterra system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Lan, Guijie & Wei, Chunjin & Zhang, Shuwen, 2019. "Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 828-842.
    5. Liu, Chao & Xun, Xinying & Zhang, Qingling & Li, Yuanke, 2019. "Dynamical analysis and optimal control in a hybrid stochastic double delayed bioeconomic system with impulsive contaminants emission and Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 99-118.
    6. Wang, Sheng & Wang, Linshan & Wei, Tengda, 2018. "Permanence and asymptotic behaviors of stochastic predator–prey system with Markovian switching and Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 294-311.
    7. Liu, Yan & Zhang, Di & Su, Huan & Feng, Jiqiang, 2019. "Stationary distribution for stochastic coupled systems with regime switching and feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Sheng Wang & Linshan Wang & Tengda Wei, 2017. "Well-Posedness and Asymptotic Behaviors for a Predator-Prey System with Lévy Noise," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 715-725, September.
    9. Zeng, Ting & Teng, Zhidong & Li, Zhiming & Hu, Junna, 2018. "Stability in the mean of a stochastic three species food chain model with general Le´vy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 258-265.
    10. Liu, Chao & Wang, Luping & Zhang, Qingling & Li, Yuanke, 2018. "Modeling and dynamical analysis of a triple delayed prey–predator–scavenger system with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1216-1239.
    11. Wu, Jian, 2020. "Dynamics of a two-predator one-prey stochastic delay model with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    12. Feifei Bian & Wencai Zhao & Yi Song & Rong Yue, 2017. "Dynamical Analysis of a Class of Prey-Predator Model with Beddington-DeAngelis Functional Response, Stochastic Perturbation, and Impulsive Toxicant Input," Complexity, Hindawi, vol. 2017, pages 1-18, December.
    13. Jaouad Danane & Delfim F. M. Torres, 2023. "Three-Species Predator–Prey Stochastic Delayed Model Driven by Lévy Jumps and with Cooperation among Prey Species," Mathematics, MDPI, vol. 11(7), pages 1-22, March.
    14. Pal, Debjit & Ghorai, Santu & Kesh, Dipak & Mukherjee, Debasis, 2024. "Hopf bifurcation and patterns formation in a diffusive two prey-one predator system with fear in preys and help," Applied Mathematics and Computation, Elsevier, vol. 481(C).
    15. Gao, Hongjun & Wang, Ying, 2019. "Stochastic mutualism model under regime switching with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 355-375.
    16. Yu, Jingyi & Liu, Meng, 2017. "Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 14-28.
    17. Yang, Ruizhi, 2017. "Bifurcation analysis of a diffusive predator–prey system with Crowley–Martin functional response and delay," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 131-139.
    18. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2018. "Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 226-239.
    19. Liu, Meng & Bai, Chuanzhi, 2016. "Dynamics of a stochastic one-prey two-predator model with Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 308-321.
    20. Xiangjun Dai & Hui Jiao & Jianjun Jiao & Qi Quan, 2023. "Survival Analysis of a Predator–Prey Model with Seasonal Migration of Prey Populations between Breeding and Non-Breeding Regions," Mathematics, MDPI, vol. 11(18), pages 1-19, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:25:y:2023:i:4:d:10.1007_s11009-023-10064-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.