IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v79y2014i3p253-272.html
   My bibliography  Save this article

On topological existence theorems and applications to optimization-related problems

Author

Listed:
  • Phan Khanh
  • Lai Lin
  • Vo Long

Abstract

In this paper, we establish a continuous selection theorem and use it to derive five equivalent results on the existence of fixed points, sectional points, maximal elements, intersection points and solutions of variational relations, all in topological settings without linear structures. Then, we study the solution existence of a number of optimization-related problems as examples of applications of these results: quasivariational inclusions, Stampacchia-type vector equilibrium problems, Nash equilibria, traffic networks, saddle points, constrained minimization, and abstract economies. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Phan Khanh & Lai Lin & Vo Long, 2014. "On topological existence theorems and applications to optimization-related problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(3), pages 253-272, June.
  • Handle: RePEc:spr:mathme:v:79:y:2014:i:3:p:253-272
    DOI: 10.1007/s00186-014-0462-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-014-0462-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-014-0462-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    2. Q. H. Ansari & Y. C. Lin & J. C. Yao, 2000. "General KKM Theorem with Applications to Minimax and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 104(1), pages 17-57, January.
    3. M. Balaj & L. J. Lin, 2011. "Generalized Variational Relation Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 148(1), pages 1-13, January.
    4. P. Q. Khanh & L. M. Luu, 2004. "On the Existence of Solutions to Vector Quasivariational Inequalities and Quasicomplementarity Problems with Applications Break to Traffic Network Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 123(3), pages 533-548, December.
    5. Nguyen Hai & Phan Khanh & Nguyen Quan, 2009. "On the existence of solutions to quasivariational inclusion problems," Computational Optimization and Applications, Springer, vol. 45(4), pages 565-581, December.
    6. D. T. Luc, 2008. "An Abstract Problem in Variational Analysis," Journal of Optimization Theory and Applications, Springer, vol. 138(1), pages 65-76, July.
    7. Lai-Jiu Lin, 2012. "Variational relation problems and equivalent forms of generalized Fan-Browder fixed point theorem with applications to Stampacchia equilibrium problems," Journal of Global Optimization, Springer, vol. 53(2), pages 215-229, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phan Khanh & Vo Long, 2014. "Invariant-point theorems and existence of solutions to optimization-related problems," Journal of Global Optimization, Springer, vol. 58(3), pages 545-564, March.
    2. M. Balaj & L. J. Lin, 2013. "Existence Criteria for the Solutions of Two Types of Variational Relation Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 232-246, February.
    3. R. P. Agarwal & M. Balaj & D. O’Regan, 2012. "A Unifying Approach to Variational Relation Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 417-429, November.
    4. Ali Farajzadeh & Byung Soo Lee & Somyot Plubteing, 2016. "On Generalized Quasi-Vector Equilibrium Problems via Scalarization Method," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 584-599, February.
    5. M. Balaj & L. J. Lin, 2011. "Generalized Variational Relation Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 148(1), pages 1-13, January.
    6. Zhe Yang & Yong Jian Pu, 2012. "Generalized Knaster–Kuratowski–Mazurkiewicz Theorem Without Convex Hull," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 17-29, July.
    7. P. Q. Khanh & N. H. Quan, 2010. "Existence Results for General Inclusions Using Generalized KKM Theorems with Applications to Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 640-653, September.
    8. Anulekha Dhara & Dinh Luc, 2014. "A solution method for linear variational relation problems," Journal of Global Optimization, Springer, vol. 59(4), pages 729-756, August.
    9. Duggan, John, 2011. "General conditions for the existence of maximal elements via the uncovered set," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 755-759.
    10. Truong Duong & Nguyen Tan, 2012. "On the existence of solutions to generalized quasi-equilibrium problems," Journal of Global Optimization, Springer, vol. 52(4), pages 711-728, April.
    11. Robert M. Anderson & Haosui Duanmu & M. Ali Khan & Metin Uyanik, 2022. "Walrasian equilibrium theory with and without free-disposal: theorems and counterexamples in an infinite-agent context," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 387-412, April.
    12. M. Ali Khan & Richard P. McLean & Metin Uyanik, 2025. "Excess demand approach with non-convexity and discontinuity: a generalization of the Gale–Nikaido–Kuhn–Debreu lemma," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 79(4), pages 1167-1190, June.
    13. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    14. Rabia Nessah & Guoqiang Tian, 2013. "Existence of Solution of Minimax Inequalities, Equilibria in Games and Fixed Points Without Convexity and Compactness Assumptions," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 75-95, April.
    15. Gerasímou, Georgios, 2010. "Consumer theory with bounded rational preferences," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 708-714, September.
    16. Charalambos Aliprantis & Rabee Tourky, 2009. "Equilibria in incomplete assets economies with infinite dimensional spot markets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 221-262, February.
    17. Florenzano Monique, 1991. "Quasiequilibria in abstract economies application to the overlapping generations models," CEPREMAP Working Papers (Couverture Orange) 9117, CEPREMAP.
    18. Llinares, Juan-Vicente, 1998. "Unified treatment of the problem of existence of maximal elements in binary relations: a characterization," Journal of Mathematical Economics, Elsevier, vol. 29(3), pages 285-302, April.
    19. Tian, Guoqiang, 1991. "Generalized quasi-variational-like inequality problem," MPRA Paper 41219, University Library of Munich, Germany, revised 26 May 1992.
    20. Monica Patriche, 2013. "Fixed Point and Equilibrium Theorems in a Generalized Convexity Framework," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 701-715, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:79:y:2014:i:3:p:253-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.