IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v28y2022i1d10.1007_s10985-021-09543-3.html
   My bibliography  Save this article

Bayesian analysis under accelerated failure time models with error-prone time-to-event outcomes

Author

Listed:
  • Yanlin Tang

    (East China Normal University)

  • Xinyuan Song

    (The Chinese University of Hong Kong)

  • Grace Yun Yi

    (University of Western Ontario)

Abstract

We consider accelerated failure time models with error-prone time-to-event outcomes. The proposed models extend the conventional accelerated failure time model by allowing time-to-event responses to be subject to measurement errors. We describe two measurement error models, a logarithm transformation regression measurement error model and an additive error model with a positive increment, to delineate possible scenarios of measurement error in time-to-event outcomes. We develop Bayesian approaches to conduct statistical inference. Efficient Markov chain Monte Carlo algorithms are developed to facilitate the posterior inference. Extensive simulation studies are conducted to assess the performance of the proposed method, and an application to a study of Alzheimer’s disease is presented.

Suggested Citation

  • Yanlin Tang & Xinyuan Song & Grace Yun Yi, 2022. "Bayesian analysis under accelerated failure time models with error-prone time-to-event outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 139-168, January.
  • Handle: RePEc:spr:lifeda:v:28:y:2022:i:1:d:10.1007_s10985-021-09543-3
    DOI: 10.1007/s10985-021-09543-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-021-09543-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-021-09543-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharon X. Xie & C. Y. Wang & Ross L. Prentice, 2001. "A risk set calibration method for failure time regression by using a covariate reliability sample," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 855-870.
    2. Yi Li & Louise Ryan, 2004. "Survival Analysis With Heterogeneous Covariate Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 724-735, January.
    3. Thomas Augustin, 2004. "An Exact Corrected Log‐Likelihood Function for Cox's Proportional Hazards Model under Measurement Error and Some Extensions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(1), pages 43-50, March.
    4. Gwangsu Kim & Yongdai Kim & Taeryon Choi, 2017. "Bayesian Analysis of the Proportional Hazards Model with Time-Varying Coefficients," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 524-544, June.
    5. Sun, Liuquan & Zhou, Xian, 2008. "Inference in the additive risk model with time-varying covariates subject to measurement errors," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2559-2566, November.
    6. John M. Neuhaus, 2002. "Analysis of Clustered and Longitudinal Binary Data Subject to Response Misclassification," Biometrics, The International Biometric Society, vol. 58(3), pages 675-683, September.
    7. Ying Yan & Grace Y. Yi, 2016. "A Class of Functional Methods for Error-Contaminated Survival Data Under Additive Hazards Models with Replicate Measurements," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 684-695, April.
    8. Kim, Gwangsu & Choi, Taeryon, 2019. "Asymptotic properties of nonparametric estimation and quantile regression in Bayesian structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 68-82.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li-Pang Chen & Grace Y. Yi, 2021. "Semiparametric methods for left-truncated and right-censored survival data with covariate measurement error," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 481-517, June.
    2. Sandip Barui & Grace Y. Yi, 2020. "Semiparametric methods for survival data with measurement error under additive hazards cure rate models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 421-450, July.
    3. Yijian Huang & Ching†Yun Wang, 2018. "Cox regression with dependent error in covariates," Biometrics, The International Biometric Society, vol. 74(1), pages 118-126, March.
    4. S. Magnussen, 2015. "A fixed count sampling estimator of stem density based on a survival function," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 61(11), pages 485-495.
    5. McMahon, James M. & Pouget, Enrique R. & Tortu, Stephanie, 2006. "A guide for multilevel modeling of dyadic data with binary outcomes using SAS PROC NLMIXED," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3663-3680, August.
    6. Eil, David & Lien, Jaimie W., 2014. "Staying ahead and getting even: Risk attitudes of experienced poker players," Games and Economic Behavior, Elsevier, vol. 87(C), pages 50-69.
    7. Shun Yu & Xianzheng Huang, 2019. "Link misspecification in generalized linear mixed models with a random intercept for binary responses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 827-843, September.
    8. Xiaomei Liao & David M. Zucker & Yi Li & Donna Spiegelman, 2011. "Survival Analysis with Error-Prone Time-Varying Covariates: A Risk Set Calibration Approach," Biometrics, The International Biometric Society, vol. 67(1), pages 50-58, March.
    9. Yingyao Hu & Geert Ridder, 2012. "Estimation of nonlinear models with mismeasured regressors using marginal information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 347-385, April.
    10. Brajendra C. Sutradhar, 2022. "Fixed versus Mixed Effects Based Marginal Models for Clustered Correlated Binary Data: an Overview on Advances and Challenges," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 259-302, May.
    11. Hans Schneeweiss & Thomas Augustin, 2006. "Some recent advances in measurement error models and methods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 183-197, March.
    12. Muff, Stefanie & Ott, Manuela & Braun, Julia & Held, Leonhard, 2017. "Bayesian two-component measurement error modelling for survival analysis using INLA—A case study on cardiovascular disease mortality in Switzerland," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 177-193.
    13. William Liu, 2023. "A Theory Guide to Using Control Functions to Instrument Hazard Models," Papers 2312.03165, arXiv.org.
    14. Ching‐Yun Wang & Xiao Song, 2021. "Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard," Biometrics, The International Biometric Society, vol. 77(2), pages 561-572, June.
    15. Xiao Song & Edward C. Chao & Ching‐Yun Wang, 2023. "A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure," Biometrics, The International Biometric Society, vol. 79(1), pages 437-448, March.
    16. Wen Ye & Xihong Lin & Jeremy M. G. Taylor, 2008. "Semiparametric Modeling of Longitudinal Measurements and Time-to-Event Data–A Two-Stage Regression Calibration Approach," Biometrics, The International Biometric Society, vol. 64(4), pages 1238-1246, December.
    17. Yuanshan Wu & Yanyuan Ma & Guosheng Yin, 2015. "Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1670-1683, December.
    18. Abidemi K. Adeniji & Steven H. Belle & Abdus S. Wahed, 2014. "Incorporating diagnostic accuracy into the estimation of discrete survival function," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 60-72, January.
    19. Liang Li & Bo Hu & Tom Greene, 2009. "A Semiparametric Joint Model for Longitudinal and Survival Data with Application to Hemodialysis Study," Biometrics, The International Biometric Society, vol. 65(3), pages 737-745, September.
    20. Yih-Huei Huang & Chi-Chung Wen & Yu-Hua Hsu, 2015. "The Extensively Corrected Score for Measurement Error Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 911-924, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:28:y:2022:i:1:d:10.1007_s10985-021-09543-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.