IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v5y2018i1d10.1186_s40488-018-0086-7.html
   My bibliography  Save this article

Parameters of stochastic models for electroencephalogram data as biomarkers for child’s neurodevelopment after cerebral malaria

Author

Listed:
  • Maria A. Veretennikova

    (Department of Statistics and Data Analysis, Faculty of Economic Science, National Research University, Higher School of Economics)

  • Alla Sikorskii

    (Michigan State University)

  • Michael J. Boivin

    (Michigan State University)

Abstract

The objective of this study was to test statistical features from the electroencephalogram (EEG) recordings as predictors of neurodevelopment and cognition of Ugandan children after coma due to cerebral malaria. The increments of the frequency bands of EEG time series were modeled as Student processes; the parameters of these Student processes were estimated and used along with clinical and demographic data in a machine-learning algorithm for the prediction of children’s neurodevelopmental and cognitive scores 6 months after cerebral malaria illness. The key innovation of this work is in the identification of stochastic EEG features that can serve as language-independent markers of the impact of cerebral malaria on the developing brain. The results can enhance prognostic determination of which children are in most need of rehabilitative interventions, which is especially important in resource-constrained settings such as sub-Saharan Africa.

Suggested Citation

  • Maria A. Veretennikova & Alla Sikorskii & Michael J. Boivin, 2018. "Parameters of stochastic models for electroencephalogram data as biomarkers for child’s neurodevelopment after cerebral malaria," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-12, December.
  • Handle: RePEc:spr:jstada:v:5:y:2018:i:1:d:10.1186_s40488-018-0086-7
    DOI: 10.1186/s40488-018-0086-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-018-0086-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-018-0086-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claudia Kirch & Birte Muhsal & Hernando Ombao, 2015. "Detection of Changes in Multivariate Time Series With Application to EEG Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1197-1216, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anastasiou, Andreas & Cribben, Ivor & Fryzlewicz, Piotr, 2022. "Cross-covariance isolate detect: a new change-point method for estimating dynamic functional connectivity," LSE Research Online Documents on Economics 112148, London School of Economics and Political Science, LSE Library.
    2. Buddhananda Banerjee & Satyaki Mazumder, 2018. "A more powerful test identifying the change in mean of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 691-715, June.
    3. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
    4. Pluta, Dustin & Yu, Zhaoxia & Shen, Tong & Chen, Chuansheng & Xue, Gui & Ombao, Hernando, 2018. "Statistical methods and challenges in connectome genetics," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 83-86.
    5. Maria Mohr & Leonie Selk, 2020. "Estimating change points in nonparametric time series regression models," Statistical Papers, Springer, vol. 61(4), pages 1437-1463, August.
    6. Marie Tuft & Martica H. Hall & Robert T. Krafty, 2023. "Spectra in low‐rank localized layers (SpeLLL) for interpretable time–frequency analysis," Biometrics, The International Biometric Society, vol. 79(1), pages 304-318, March.
    7. Hajra Siddiqa & Sajid Ali & Ismail Shah, 2021. "Most recent changepoint detection in censored panel data," Computational Statistics, Springer, vol. 36(1), pages 515-540, March.
    8. Ivor Cribben & Yi Yu, 2017. "Estimating whole-brain dynamics by using spectral clustering," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 607-627, April.
    9. Marie Hušková & Zuzana Prášková & Josef G. Steinebach, 2022. "Estimating a gradual parameter change in an AR(1)-process," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 771-808, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:5:y:2018:i:1:d:10.1186_s40488-018-0086-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.