IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v27y2024i3d10.1007_s10951-023-00793-7.html
   My bibliography  Save this article

Single-machine primary–secondary scheduling with total tardiness being the primary criterion

Author

Listed:
  • Qiulan Zhao

    (Nanjing University)

  • Jinjiang Yuan

    (Zhengzhou University)

Abstract

We study the single-machine primary–secondary scheduling problems in which the total tardiness is the primary criterion and the secondary criteria are the maximum lateness, the (weighted) number of tardy jobs, and the total weighted tardiness, respectively. These problems are known to be NP-hard, but their exact complexities (strongly NP-hard or pseudo-polynomially solvable) were posed by (in: Pardalos (ed) Complexity in numerical optimization, World Scientific, 1993) as open problems. In this paper, we show that these problems are solvable in pseudo-polynomial time.

Suggested Citation

  • Qiulan Zhao & Jinjiang Yuan, 2024. "Single-machine primary–secondary scheduling with total tardiness being the primary criterion," Journal of Scheduling, Springer, vol. 27(3), pages 309-318, June.
  • Handle: RePEc:spr:jsched:v:27:y:2024:i:3:d:10.1007_s10951-023-00793-7
    DOI: 10.1007/s10951-023-00793-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-023-00793-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-023-00793-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    2. E. L. Lawler & J. M. Moore, 1969. "A Functional Equation and its Application to Resource Allocation and Sequencing Problems," Management Science, INFORMS, vol. 16(1), pages 77-84, September.
    3. Rubing Chen & Jinjiang Yuan, 2019. "Unary NP-hardness of single-machine scheduling to minimize the total tardiness with deadlines," Journal of Scheduling, Springer, vol. 22(5), pages 595-601, October.
    4. Esther M. Arkin & Robin O. Roundy, 1991. "Weighted-Tardiness Scheduling on Parallel Machines with Proportional Weights," Operations Research, INFORMS, vol. 39(1), pages 64-81, February.
    5. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    6. Jianzhong Du & Joseph Y.-T. Leung, 1990. "Minimizing Total Tardiness on One Machine is NP-Hard," Mathematics of Operations Research, INFORMS, vol. 15(3), pages 483-495, August.
    7. Koulamas, Christos & Kyparisis, George J., 2001. "Single machine scheduling with release times, deadlines and tardiness objectives," European Journal of Operational Research, Elsevier, vol. 133(2), pages 447-453, January.
    8. Hamilton Emmons, 1969. "One-Machine Sequencing to Minimize Certain Functions of Job Tardiness," Operations Research, INFORMS, vol. 17(4), pages 701-715, August.
    9. Jinjiang Yuan, 2017. "Unary NP-hardness of minimizing the number of tardy jobs with deadlines," Journal of Scheduling, Springer, vol. 20(2), pages 211-218, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubing Chen & Jinjiang Yuan, 2019. "Unary NP-hardness of single-machine scheduling to minimize the total tardiness with deadlines," Journal of Scheduling, Springer, vol. 22(5), pages 595-601, October.
    2. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    3. Chengbin Chu, 1992. "A branch‐and‐bound algorithm to minimize total tardiness with different release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 265-283, March.
    4. Philippe Baptiste & Ruslan Sadykov, 2009. "On scheduling a single machine to minimize a piecewise linear objective function: A compact MIP formulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 487-502, September.
    5. Rubing Chen & Jinjiang Yuan & C.T. Ng & T.C.E. Cheng, 2019. "Single‐machine scheduling with deadlines to minimize the total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 582-595, October.
    6. Christos Koulamas & George Steiner, 2021. "New results for scheduling to minimize tardiness on one machine with rejection and related problems," Journal of Scheduling, Springer, vol. 24(1), pages 27-34, February.
    7. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    8. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    9. Sen, Tapan & Sulek, Joanne M. & Dileepan, Parthasarati, 2003. "Static scheduling research to minimize weighted and unweighted tardiness: A state-of-the-art survey," International Journal of Production Economics, Elsevier, vol. 83(1), pages 1-12, January.
    10. Briskorn, Dirk & Davari, Morteza & Matuschke, Jannik, 2021. "Single-machine scheduling with an external resource," European Journal of Operational Research, Elsevier, vol. 293(2), pages 457-468.
    11. Kuan Wei Huang & Bertrand M. T. Lin, 2024. "Deep Q-Networks for Minimizing Total Tardiness on a Single Machine," Mathematics, MDPI, vol. 13(1), pages 1-22, December.
    12. Evgeny Gafarov & Alexander Lazarev & Frank Werner, 2012. "Transforming a pseudo-polynomial algorithm for the single machine total tardiness maximization problem into a polynomial one," Annals of Operations Research, Springer, vol. 196(1), pages 247-261, July.
    13. Helmut A. Sedding, 2020. "Scheduling jobs with a V-shaped time-dependent processing time," Journal of Scheduling, Springer, vol. 23(6), pages 751-768, December.
    14. Hongmin Li & Woonghee T. Huh & Matheus C. Sampaio & Naiping Keng, 2021. "Planning Production and Equipment Qualification under High Process Flexibility," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3369-3390, October.
    15. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    16. Jouglet, Antoine & Carlier, Jacques, 2011. "Dominance rules in combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 212(3), pages 433-444, August.
    17. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    18. Liu, Zhixin & Lu, Liang & Qi, Xiangtong, 2020. "Price quotation for orders with different due dates," International Journal of Production Economics, Elsevier, vol. 220(C).
    19. John J. Kanet, 2014. "One-Machine Sequencing to Minimize Total Tardiness: A Fourth Theorem for Emmons," Operations Research, INFORMS, vol. 62(2), pages 345-347, April.
    20. Roberto Cordone & Pierre Hosteins & Giovanni Righini, 2018. "A Branch-and-Bound Algorithm for the Prize-Collecting Single-Machine Scheduling Problem with Deadlines and Total Tardiness Minimization," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 168-180, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:27:y:2024:i:3:d:10.1007_s10951-023-00793-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.