IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v23y2020i5d10.1007_s10951-019-00633-7.html
   My bibliography  Save this article

Two-stage open-shop scheduling with a two-machine flow shop as a stage: approximation algorithms and empirical experiments

Author

Listed:
  • Jianming Dong

    (Zhejiang Sci-Tech University)

  • Joshua Chang

    (University of Alberta)

  • Bing Su

    (Xi’an Technological University)

  • Jueliang Hu

    (Zhejiang Sci-Tech University)

  • Guohui Lin

    (University of Alberta)

Abstract

We study a scheduling environment that finds many real-world manufacturing applications, in which there is a close connection between a hybrid multiprocessor open shop and multiple parallel identical flow shops. In this environment, there is an extended two-stage open shop, where in one stage we have a set of parallel identical machines, while in the other we have a two-machine flow shop. Our objective is to minimize the makespan, that is, the latest completion time of all jobs. We pursue approximation algorithms with provable performance, and we achieve a 2-approximation when the number of parallel identical machines is constant or is part of the input; we also design a 5/3-approximation for the special case where there is only one machine in the multiprocessor stage, which remains weakly NP-hard. Our empirical experiments show that both approximation algorithms perform much better in simulated instances; their average ratios over the proposed lower bound are around 1.5 and 1.2, respectively.

Suggested Citation

  • Jianming Dong & Joshua Chang & Bing Su & Jueliang Hu & Guohui Lin, 2020. "Two-stage open-shop scheduling with a two-machine flow shop as a stage: approximation algorithms and empirical experiments," Journal of Scheduling, Springer, vol. 23(5), pages 595-608, October.
  • Handle: RePEc:spr:jsched:v:23:y:2020:i:5:d:10.1007_s10951-019-00633-7
    DOI: 10.1007/s10951-019-00633-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-019-00633-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-019-00633-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoogeveen, J. A. & Lenstra, J. K. & Veltman, B., 1996. "Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard," European Journal of Operational Research, Elsevier, vol. 89(1), pages 172-175, February.
    2. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    3. D. P. Williamson & L. A. Hall & J. A. Hoogeveen & C. A. J. Hurkens & J. K. Lenstra & S. V. Sevast'janov & D. B. Shmoys, 1997. "Short Shop Schedules," Operations Research, INFORMS, vol. 45(2), pages 288-294, April.
    4. Zhang, Xiandong & van de Velde, Steef, 2012. "Approximation algorithms for the parallel flow shop problem," European Journal of Operational Research, Elsevier, vol. 216(3), pages 544-552.
    5. Bo Chen & Celia A. Glass & Chris N. Potts & Vitaly A. Strusevich, 1996. "A New Heuristic for Three-Machine Flow Shop Scheduling," Operations Research, INFORMS, vol. 44(6), pages 891-898, December.
    6. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeynep Adak & Mahmure Övül Arıoğlu Akan & Serol Bulkan, 0. "Multiprocessor open shop problem: literature review and future directions," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    2. Zeynep Adak & Mahmure Övül Arıoğlu Akan & Serol Bulkan, 2020. "Multiprocessor open shop problem: literature review and future directions," Journal of Combinatorial Optimization, Springer, vol. 40(2), pages 547-569, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianming Dong & Ruyan Jin & Jueliang Hu & Guohui Lin, 2019. "A fully polynomial time approximation scheme for scheduling on parallel identical two-stage openshops," Journal of Combinatorial Optimization, Springer, vol. 37(2), pages 668-684, February.
    2. Yong Chen & Yinhui Cai & Longcheng Liu & Guangting Chen & Randy Goebel & Guohui Lin & Bing Su & An Zhang, 2022. "Path cover with minimum nontrivial paths and its application in two-machine flow-shop scheduling with a conflict graph," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 571-588, April.
    3. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    4. D Bai & L Tang, 2010. "New heuristics for flow shop problem to minimize makespan," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1032-1040, June.
    5. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
    6. A. G. Leeftink & R. J. Boucherie & E. W. Hans & M. A. M. Verdaasdonk & I. M. H. Vliegen & P. J. Diest, 2018. "Batch scheduling in the histopathology laboratory," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 171-197, June.
    7. Fátima Pilar & Eliana Costa e Silva & Ana Borges, 2023. "Optimizing Vehicle Repairs Scheduling Using Mixed Integer Linear Programming: A Case Study in the Portuguese Automobile Sector," Mathematics, MDPI, vol. 11(11), pages 1-23, June.
    8. Nicolás Álvarez-Gil & Rafael Rosillo & David de la Fuente & Raúl Pino, 2021. "A discrete firefly algorithm for solving the flexible job-shop scheduling problem in a make-to-order manufacturing system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1353-1374, December.
    9. Drobouchevitch, I. G. & Strusevich, V. A., 2000. "Heuristics for the two-stage job shop scheduling problem with a bottleneck machine," European Journal of Operational Research, Elsevier, vol. 123(2), pages 229-240, June.
    10. Fan Yang & Roel Leus, 2021. "Scheduling hybrid flow shops with time windows," Journal of Heuristics, Springer, vol. 27(1), pages 133-158, April.
    11. Jansen, Klaus & Mastrolilli, Monaldo & Solis-Oba, Roberto, 2005. "Approximation schemes for job shop scheduling problems with controllable processing times," European Journal of Operational Research, Elsevier, vol. 167(2), pages 297-319, December.
    12. Kameng Nip & Zhenbo Wang & Fabrice Talla Nobibon & Roel Leus, 2015. "A combination of flow shop scheduling and the shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 29(1), pages 36-52, January.
    13. George J. Kyparisis & Christos Koulamas, 2002. "Assembly-Line Scheduling with Concurrent Operations and Parallel Machines," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 68-80, February.
    14. Zhang, Xiandong & van de Velde, Steef, 2012. "Approximation algorithms for the parallel flow shop problem," European Journal of Operational Research, Elsevier, vol. 216(3), pages 544-552.
    15. Olivier Ploton & Vincent T’kindt, 2023. "Moderate worst-case complexity bounds for the permutation flowshop scheduling problem using Inclusion–Exclusion," Journal of Scheduling, Springer, vol. 26(2), pages 137-145, April.
    16. Naderi, Bahman & Ruiz, Rubén, 2014. "A scatter search algorithm for the distributed permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 323-334.
    17. Jianming Dong & Yong Chen & An Zhang & Qifan Yang, 2013. "A new three-machine shop scheduling: complexity and approximation algorithm," Journal of Combinatorial Optimization, Springer, vol. 26(4), pages 799-810, November.
    18. Figielska, Ewa, 2014. "A heuristic for scheduling in a two-stage hybrid flowshop with renewable resources shared among the stages," European Journal of Operational Research, Elsevier, vol. 236(2), pages 433-444.
    19. Yuri N. Sotskov, 2020. "Mixed Graph Colorings: A Historical Review," Mathematics, MDPI, vol. 8(3), pages 1-24, March.
    20. Nicholas G. Hall & 'Maseka Lesaoana & Chris N. Potts, 2001. "Scheduling with Fixed Delivery Dates," Operations Research, INFORMS, vol. 49(1), pages 134-144, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:23:y:2020:i:5:d:10.1007_s10951-019-00633-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.