IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v38y2025i4d10.1007_s10959-025-01441-w.html
   My bibliography  Save this article

Milstein Scheme for Stochastic Differential Equations driven by G-Brownian Motion

Author

Listed:
  • Bahar Akhtari

    (University of Isfahan
    School of Mathematics, Institute for Research in Fundamental Sciences (IPM))

  • Panyu Wu

    (Shandong University)

Abstract

Driven by the emergence of stochastic differential equations (SDEs) influenced by G-Brownian motion in the context of uncertain data across various financial scenarios, there is a pressing need to develop efficient numerical schemes for approximating these types of SDEs. Recently, several discretization schemes have been introduced to numerically solve G-SDEs using the standard Euler–Maruyama method. This study presents a first-order discretization scheme based on the G-Itô’s formula for G-SDEs. Furthermore, we examine the convergence of the proposed scheme and explore its asymptotic behavior in the $$L^2$$ L 2 sense. The findings confirm that the numerical method exhibits stability against small perturbations.

Suggested Citation

  • Bahar Akhtari & Panyu Wu, 2025. "Milstein Scheme for Stochastic Differential Equations driven by G-Brownian Motion," Journal of Theoretical Probability, Springer, vol. 38(4), pages 1-21, December.
  • Handle: RePEc:spr:jotpro:v:38:y:2025:i:4:d:10.1007_s10959-025-01441-w
    DOI: 10.1007/s10959-025-01441-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-025-01441-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-025-01441-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Fuqing, 2009. "Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3356-3382, October.
    2. Soner, H. Mete & Touzi, Nizar & Zhang, Jianfeng, 2011. "Martingale representation theorem for the G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 265-287, February.
    3. Marcel Nutz & H. Mete Soner, 2010. "Superhedging and Dynamic Risk Measures under Volatility Uncertainty," Papers 1011.2958, arXiv.org, revised Jun 2012.
    4. Luo, Peng & Wang, Falei, 2014. "Stochastic differential equations driven by G-Brownian motion and ordinary differential equations," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3869-3885.
    5. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Backward stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 759-784.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Guomin, 2020. "Exit times for semimartingales under nonlinear expectation," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7338-7362.
    2. Hu, Mingshang & Ji, Xiaojun & Liu, Guomin, 2021. "On the strong Markov property for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 417-453.
    3. Hu, Mingshang & Wang, Falei, 2021. "Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 139-171.
    4. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    5. He, Wei, 2024. "Multi-dimensional mean-reflected BSDEs driven by G-Brownian motion with time-varying non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 206(C).
    6. Wang, Bingjun & Yuan, Mingxia, 2019. "Forward-backward stochastic differential equations driven by G-Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 39-47.
    7. Luo, Peng & Wang, Falei, 2015. "On the comparison theorem for multi-dimensional G-SDEs," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 38-44.
    8. Bingjun Wang & Hongjun Gao & Mingxia Yuan & Qingkun Xiao, 2024. "Reflected Backward Stochastic Differential Equations Driven by G-Brownian Motion Under Monotonicity Condition," Journal of Theoretical Probability, Springer, vol. 37(2), pages 1902-1926, June.
    9. Zhang, Wei & Jiang, Long, 2021. "Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 171(C).
    10. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    11. Yan Dolinsky & Jonathan Zouari, 2019. "The Value of Insider Information for Super--Replication with Quadratic Transaction Costs," Papers 1910.09855, arXiv.org, revised Sep 2020.
    12. Felix-Benedikt Liebrich & Marco Maggis & Gregor Svindland, 2020. "Model Uncertainty: A Reverse Approach," Papers 2004.06636, arXiv.org, revised Mar 2022.
    13. Beißner, Patrick, 2013. "Coherent Price Systems and Uncertainty-Neutral Valuation," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80010, Verein für Socialpolitik / German Economic Association.
    14. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    15. Falei Wang & Guoqiang Zheng, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Generators," Journal of Theoretical Probability, Springer, vol. 34(2), pages 660-681, June.
    16. Francesca Biagini & Yinglin Zhang, 2017. "Reduced-form framework under model uncertainty," Papers 1707.04475, arXiv.org, revised Mar 2018.
    17. Marcel Nutz, 2014. "Robust Superhedging with Jumps and Diffusion," Papers 1407.1674, arXiv.org, revised Jul 2015.
    18. Peter Bank & Yan Dolinsky & Selim Gokay, 2014. "Super-replication with nonlinear transaction costs and volatility uncertainty," Papers 1411.1229, arXiv.org, revised Jun 2015.
    19. Ariel Neufeld & Marcel Nutz, 2012. "Superreplication under Volatility Uncertainty for Measurable Claims," Papers 1208.6486, arXiv.org, revised Apr 2013.
    20. Dylan Possamai & Xiaolu Tan & Chao Zhou, 2015. "Stochastic control for a class of nonlinear kernels and applications," Papers 1510.08439, arXiv.org, revised Jul 2017.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:38:y:2025:i:4:d:10.1007_s10959-025-01441-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.