Moderate Deviation Principle for Multiscale Systems Driven by Fractional Brownian Motion
Author
Abstract
Suggested Citation
DOI: 10.1007/s10959-023-01235-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584, June.
- José Luís Silva & Mohamed Erraoui & El Hassan Essaky, 2018. "Mixed Stochastic Differential Equations: Existence and Uniqueness Result," Journal of Theoretical Probability, Springer, vol. 31(2), pages 1119-1141, June.
- Giacomo Ascione & Yuliya Mishura & Enrica Pirozzi, 2021. "Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 53-84, March.
- Fabienne Comte & Eric Renault, 1998.
"Long memory in continuous‐time stochastic volatility models,"
Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
- Comte, F. & Renault, E., 1996. "Long Memory in Continuous Time Stochastic Volatility Models," Papers 96.406, Toulouse - GREMAQ.
- Klebaner, F. C. & Liptser, R., 1999. "Moderate deviations for randomly perturbed dynamical systems," Stochastic Processes and their Applications, Elsevier, vol. 80(2), pages 157-176, April.
- Masaaki Fukasawa, 2017. "Short-time at-the-money skew and rough fractional volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 189-198, February.
- C. Bayer & P. K. Friz & A. Gulisashvili & B. Horvath & B. Stemper, 2019. "Short-time near-the-money skew in rough fractional volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 779-798, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Solesne Bourguin & Thanh Dang & Konstantinos Spiliopoulos, 2023. "Moderate Deviation Principle for Multiscale Systems Driven by Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-57, March.
- Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
- Paul Hager & Eyal Neuman, 2020. "The Multiplicative Chaos of $H=0$ Fractional Brownian Fields," Papers 2008.01385, arXiv.org.
- Dupret, Jean-Loup & Barbarin, Jérôme & Hainaut, Donatien, 2021. "Impact of rough stochastic volatility models on long-term life insurance pricing," LIDAM Discussion Papers ISBA 2021017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
- Giacomo Giorgio & Barbara Pacchiarotti & Paolo Pigato, 2023.
"Short-Time Asymptotics for Non-Self-Similar Stochastic Volatility Models,"
Applied Mathematical Finance, Taylor & Francis Journals, vol. 30(3), pages 123-152, May.
- Giacomo Giorgio & Barbara Pacchiarotti & Paolo Pigato, 2022. "Short-time asymptotics for non self-similar stochastic volatility models," Papers 2204.10103, arXiv.org, revised Nov 2023.
- Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
- Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022.
"Short-dated smile under rough volatility: asymptotics and numerics,"
Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
- Peter K. Friz & Paul Gassiat & Paolo Pigato, 2020. "Short dated smile under Rough Volatility: asymptotics and numerics," Papers 2009.08814, arXiv.org, revised Sep 2021.
- Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023.
"Local volatility under rough volatility,"
Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
- Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2022. "Local volatility under rough volatility," Papers 2204.02376, arXiv.org, revised Nov 2022.
- Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
- Qi Feng & Jianfeng Zhang, 2021. "Cubature Method for Stochastic Volterra Integral Equations," Papers 2110.12853, arXiv.org, revised Jul 2023.
- Wang, XiaoTian & Yang, ZiJian & Cao, PiYao & Wang, ShiLin, 2021. "The closed-form option pricing formulas under the sub-fractional Poisson volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
- Eduardo Abi Jaber, 2019. "Lifting the Heston model," Post-Print hal-01890751, HAL.
- Archil Gulisashvili, 2017. "Large deviation principle for Volterra type fractional stochastic volatility models," Papers 1710.10711, arXiv.org, revised Aug 2018.
- Eyal Neuman & Mathieu Rosenbaum, 2017. "Fractional Brownian motion with zero Hurst parameter: a rough volatility viewpoint," Papers 1711.00427, arXiv.org, revised May 2018.
- Nourdin, Ivan & Diu Tran, T.T., 2019. "Statistical inference for Vasicek-type model driven by Hermite processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3774-3791.
- Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
- Kim, Jeong-Hoon & Yoon, Ji-Hun & Lee, Jungwoo & Choi, Sun-Yong, 2015. "On the stochastic elasticity of variance diffusions," Economic Modelling, Elsevier, vol. 51(C), pages 263-268.
- Jeong‐Hoon Kim & Jungwoo Lee & Song‐Ping Zhu & Seok‐Hyon Yu, 2014. "A multiscale correction to the Black–Scholes formula," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 30(6), pages 753-765, November.
More about this item
Keywords
Fractional Brownian motion; Multiscale processes; Small noise; Moderate deviations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:1:d:10.1007_s10959-023-01235-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.