IDEAS home Printed from
   My bibliography  Save this article

Large deviations for multiscale diffusion via weak convergence methods


  • Dupuis, Paul
  • Spiliopoulos, Konstantinos


We study the large deviations principle for locally periodic SDEs with small noise and fast oscillating coefficients. There are three regimes depending on how fast the intensity of the noise goes to zero relative to homogenization parameter. We use weak convergence methods which provide convenient representations for the action functional for all regimes. Along the way, we study weak limits of controlled SDEs with fast oscillating coefficients. We derive, in some cases, a control that nearly achieves the large deviations lower bound at prelimit level. This control is useful for designing efficient importance sampling schemes for multiscale small noise diffusion.

Suggested Citation

  • Dupuis, Paul & Spiliopoulos, Konstantinos, 2012. "Large deviations for multiscale diffusion via weak convergence methods," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1947-1987.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1947-1987
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Veretennikov, A. Yu., 2000. "On large deviations for SDEs with small diffusion and averaging," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 69-79, September.
    2. Freidlin, Mark I. & Sowers, Richard B., 1999. "A comparison of homogenization and large deviations, with applications to wavefront propagation," Stochastic Processes and their Applications, Elsevier, vol. 82(1), pages 23-52, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kumar, Rohini & Popovic, Lea, 2017. "Large deviations for multi-scale jump-diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1297-1320.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1947-1987. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.