IDEAS home Printed from
   My bibliography  Save this article

Moderate deviations for randomly perturbed dynamical systems


  • Klebaner, F. C.
  • Liptser, R.


A Moderate Deviation Principle is established for random processes arising as small random perturbations of one-dimensional dynamical systems of the form Xn=f(Xn-1). Unlike in the Large Deviations Theory the resulting rate function is independent of the underlying noise distribution, and is always quadratic. This allows one to obtain explicit formulae for the asymptotics of probabilities of the process staying in a small tube around the deterministic system. Using these, explicit formulae for the asymptotics of exit times are obtained. Results are specified for the case when the dynamical system is periodic, and imply stability of such systems. Finally, results are applied to the model of density-dependent branching processes.

Suggested Citation

  • Klebaner, F. C. & Liptser, R., 1999. "Moderate deviations for randomly perturbed dynamical systems," Stochastic Processes and their Applications, Elsevier, vol. 80(2), pages 157-176, April.
  • Handle: RePEc:eee:spapps:v:80:y:1999:i:2:p:157-176

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Klebaner, Fima C., 1993. "Population-dependent branching processes with a threshold," Stochastic Processes and their Applications, Elsevier, vol. 46(1), pages 115-127, May.
    2. Puhalskii, A., 1994. "The method of stochastic exponentials for large deviations," Stochastic Processes and their Applications, Elsevier, vol. 54(1), pages 45-70, November.
    3. Dembo, Amir & Zajic, Tim, 1997. "Uniform large and moderate deviations for functional empirical processes," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 195-211, May.
    4. Klebaner, F. C. & Nerman, O., 1994. "Autoregressive approximation in branching processes with a threshold," Stochastic Processes and their Applications, Elsevier, vol. 51(1), pages 1-7, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Li, Yumeng & Wang, Ran & Yao, Nian & Zhang, Shuguang, 2017. "A moderate deviation principle for stochastic Volterra equation," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 79-85.
    2. Williams, Noah, 2004. "Small noise asymptotics for a stochastic growth model," Journal of Economic Theory, Elsevier, vol. 119(2), pages 271-298, December.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:80:y:1999:i:2:p:157-176. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.