IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i2d10.1007_s10957-025-02719-z.html
   My bibliography  Save this article

A Consensus-based Algorithm for Non-convex Multiplayer Games

Author

Listed:
  • Enis Chenchene

    (University of Vienna)

  • Hui Huang

    (University of Graz)

  • Jinniao Qiu

    (University of Calgary)

Abstract

In this paper, we present a novel consensus-based zeroth-order algorithm tailored for non-convex multiplayer games. The proposed method leverages a metaheuristic approach using concepts from swarm intelligence to reliably identify global Nash equilibria. We utilize a group of interacting particles, each agreeing on a specific consensus point, asymptotically converging to the corresponding optimal strategy. This paradigm permits a passage to the mean-field limit, allowing us to establish convergence guarantees under appropriate assumptions regarding initialization and objective functions. Finally, we conduct a series of numerical experiments to unveil the dependency of the proposed method on its parameters and apply it to solve a nonlinear Cournot oligopoly game involving multiple goods.

Suggested Citation

  • Enis Chenchene & Hui Huang & Jinniao Qiu, 2025. "A Consensus-based Algorithm for Non-convex Multiplayer Games," Journal of Optimization Theory and Applications, Springer, vol. 206(2), pages 1-30, August.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02719-z
    DOI: 10.1007/s10957-025-02719-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02719-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02719-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaitanya Gokhale & Arne Traulsen, 2014. "Evolutionary Multiplayer Games," Dynamic Games and Applications, Springer, vol. 4(4), pages 468-488, December.
    2. Kang Liu & Nadia Oudjane & Cheng Wan, 2023. "Approximate Nash Equilibria in Large Nonconvex Aggregative Games," Mathematics of Operations Research, INFORMS, vol. 48(3), pages 1791-1809, August.
    3. Bae, Hyeong-Ohk & Ha, Seung-Yeal & Kang, Myeongju & Lim, Hyuncheul & Min, Chanho & Yoo, Jane, 2022. "A constrained consensus based optimization algorithm and its application to finance," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozgur Aydogmus & Erkan Gürpinar, 2022. "Science, Technology and Institutional Change in Knowledge Production: An Evolutionary Game Theoretic Framework," Dynamic Games and Applications, Springer, vol. 12(4), pages 1163-1188, December.
    2. Manh Hong Duong & Hoang Minh Tran & The Anh Han, 2019. "On the Expected Number of Internal Equilibria in Random Evolutionary Games with Correlated Payoff Matrix," Dynamic Games and Applications, Springer, vol. 9(2), pages 458-485, June.
    3. Jorge Peña & Georg Nöldeke, 2023. "Cooperative Dilemmas with Binary Actions and Multiple Players," Dynamic Games and Applications, Springer, vol. 13(4), pages 1156-1193, December.
    4. Melkikh, A.V. & Beregov, R.Y. & Sutormina, M.I., 2022. "Strange attractors and nontrivial solutions in games with three players," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    5. D. Timothy Bishop & Mark Broom & Richard Southwell, 2020. "Chris Cannings: A Life in Games," Dynamic Games and Applications, Springer, vol. 10(3), pages 591-617, September.
    6. Jiahuan He & Xinggang Luo & Zhongliang Zhang & Yang Yu, 2021. "Strategic Analysis of Participants in the Provision of Elderly Care Services—An Evolutionary Game Perspective," IJERPH, MDPI, vol. 18(16), pages 1-27, August.
    7. Shiqi Xu & Wenjun Yin & Xingwei Li & Weihong Chen & Beiyu Yi & Yongquan Wang, 2023. "Evolutionary mechanism of green technology innovation behavior in the operation period of construction and demolition waste recycling public–private partnership projects," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(8), pages 4637-4650, December.
    8. Guang Zhu & Hu Liu & Mining Feng, 2018. "An Evolutionary Game-Theoretic Approach for Assessing Privacy Protection in mHealth Systems," IJERPH, MDPI, vol. 15(10), pages 1-27, October.
    9. Manh Hong Duong & The Anh Han, 2020. "On Equilibrium Properties of the Replicator–Mutator Equation in Deterministic and Random Games," Dynamic Games and Applications, Springer, vol. 10(3), pages 641-663, September.
    10. Nöldeke, Georg & Peña, Jorge, 2018. "Group size effects in social evolution," IAST Working Papers 18-75, Institute for Advanced Study in Toulouse (IAST).
    11. De Jaegher, Kris, 2017. "Harsh environments and the evolution of multi-player cooperation," Theoretical Population Biology, Elsevier, vol. 113(C), pages 1-12.
    12. Jorge Peña & Bin Wu & Jordi Arranz & Arne Traulsen, 2016. "Evolutionary Games of Multiplayer Cooperation on Graphs," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    13. Guang Zhu & Hu Liu & Mining Feng, 2018. "Sustainability of Information Security Investment in Online Social Networks: An Evolutionary Game-Theoretic Approach," Mathematics, MDPI, vol. 6(10), pages 1-19, September.
    14. Viviana Ventre & Giacomo Tollo & Roberta Martino, 2024. "Consensus reaching process for portfolio selection: a behavioral approach," 4OR, Springer, vol. 22(2), pages 283-308, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02719-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.