IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v205y2025i3d10.1007_s10957-025-02667-8.html
   My bibliography  Save this article

Nonmonotone Proximal Gradient Method for Composite Multiobjective Optimization Problems

Author

Listed:
  • Jian-Wen Peng

    (Chongqing Normal University)

  • Hua Sun

    (Chongqing Normal University)

  • Elisabeth Köbis

    (Norwegian University of Science and Technology)

Abstract

In this paper, we introduce proximal gradient methods with non-monotone Armijo line search rule of both kinds, max-type and average-type, to solve composite multiobjective optimization problems (CMOP). Moreover, the convergence analysis is given, and we show that all accumulation points of a sequence generated by both of the two kinds of nonmonotone proximal gradient methods are Pareto stationary points of (CMOP). Finally, we present numerical experiments illustrating the practical performance of these methods

Suggested Citation

  • Jian-Wen Peng & Hua Sun & Elisabeth Köbis, 2025. "Nonmonotone Proximal Gradient Method for Composite Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 205(3), pages 1-28, June.
  • Handle: RePEc:spr:joptap:v:205:y:2025:i:3:d:10.1007_s10957-025-02667-8
    DOI: 10.1007/s10957-025-02667-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02667-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02667-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Proximal gradient methods for multiobjective optimization and their applications," Computational Optimization and Applications, Springer, vol. 72(2), pages 339-361, March.
    2. J. Cruz Neto & G. Silva & O. Ferreira & J. Lopes, 2013. "A subgradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 461-472, April.
    3. Kanako Mita & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Nonmonotone line searches for unconstrained multiobjective optimization problems," Journal of Global Optimization, Springer, vol. 75(1), pages 63-90, September.
    4. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, March.
    5. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    6. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    7. C. Hillermeier, 2001. "Generalized Homotopy Approach to Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 557-583, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    2. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    3. Alfredo N. Iusem & Jefferson G. Melo & Ray G. Serra, 2021. "A Strongly Convergent Proximal Point Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 183-200, July.
    4. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    5. Qing-Rui He & Sheng-Jie Li & Bo-Ya Zhang & Chun-Rong Chen, 2024. "A family of conjugate gradient methods with guaranteed positiveness and descent for vector optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 805-842, December.
    6. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    7. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    8. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    9. Xiaopeng Zhao & Debdas Ghosh & Xiaolong Qin & Christiane Tammer & Jen-Chih Yao, 2025. "On the convergence analysis of a proximal gradient method for multiobjective optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 102-132, April.
    10. Qingjie Hu & Liping Zhu & Yu Chen, 2024. "Alternative extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 88(1), pages 217-250, May.
    11. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Antoine Soubeyran & João Carlos Oliveira Souza, 2020. "A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems," Computational Optimization and Applications, Springer, vol. 75(1), pages 263-290, January.
    12. Chen, Kangming & Fukuda, Ellen Hidemi & Sato, Hiroyuki, 2025. "Nonlinear conjugate gradient method for vector optimization on Riemannian manifolds with retraction and vector transport," Applied Mathematics and Computation, Elsevier, vol. 486(C).
    13. Bennet Gebken & Sebastian Peitz, 2021. "An Efficient Descent Method for Locally Lipschitz Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 696-723, March.
    14. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    15. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    16. Felipe Lara & Alireza Kabgani, 2021. "On global subdifferentials with applications in nonsmooth optimization," Journal of Global Optimization, Springer, vol. 81(4), pages 881-900, December.
    17. F. Lara, 2022. "On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 891-911, March.
    18. Suyun Liu & Luis Nunes Vicente, 2023. "Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 165-186, July.
    19. Balendu Bhooshan Upadhyay & Subham Poddar & Jen-Chih Yao & Xiaopeng Zhao, 2025. "Inexact proximal point method with a Bregman regularization for quasiconvex multiobjective optimization problems via limiting subdifferentials," Annals of Operations Research, Springer, vol. 345(1), pages 417-466, February.
    20. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2023. "An accelerated proximal gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 86(2), pages 421-455, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:205:y:2025:i:3:d:10.1007_s10957-025-02667-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.