IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v201y2024i1d10.1007_s10957-024-02401-w.html
   My bibliography  Save this article

Quadratic Growth and Linear Convergence of a DCA Method for Quartic Minimization over the Sphere

Author

Listed:
  • Shenglong Hu

    (Hangzhou Dianzi University)

  • Zhifang Yan

    (Hangzhou Dianzi University)

Abstract

The quartic minimization over the sphere can be reformulated as a nonlinear nonconvex semidefinite program over the spectraplex. In this paper, under mild assumptions, we show that the reformulated nonlinear semidefinite program possesses the quadratic growth property at a rank one critical point which is a local minimizer of the quartic minimization problem. The quadratic growth property further implies the strong metric subregularity of the subdifferential of the objective function of the unconstrained reformulation of the nonlinear semidefinite program, from which we can show that the objective function is a Łojasiewicz function with exponent $$\frac{1}{2}$$ 1 2 at the corresponding critical point. With these results, we can establish the linear convergence of an efficient DCA method proposed for solving the nonlinear semidefinite program.

Suggested Citation

  • Shenglong Hu & Zhifang Yan, 2024. "Quadratic Growth and Linear Convergence of a DCA Method for Quartic Minimization over the Sphere," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 378-395, April.
  • Handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-024-02401-w
    DOI: 10.1007/s10957-024-02401-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02401-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02401-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shenglong Hu & Liqun Qi, 2012. "Algebraic connectivity of an even uniform hypergraph," Journal of Combinatorial Optimization, Springer, vol. 24(4), pages 564-579, November.
    2. Jong-Shi Pang & Meisam Razaviyayn & Alberth Alvarado, 2017. "Computing B-Stationary Points of Nonsmooth DC Programs," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 95-118, January.
    3. Defeng Sun, 2006. "The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 761-776, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
    2. Tian Liu & Chaoyi Wang & Ke Xu, 2015. "Large hypertree width for sparse random hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 531-540, April.
    3. Liwei Zhang & Shengzhe Gao & Saoyan Guo, 2019. "Statistical Inference of Second-Order Cone Programming," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(02), pages 1-17, April.
    4. Shun Arahata & Takayuki Okuno & Akiko Takeda, 2023. "Complexity analysis of interior-point methods for second-order stationary points of nonlinear semidefinite optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 555-598, November.
    5. Qi Zhao & Zhongwen Chen, 2018. "An SQP-type Method with Superlinear Convergence for Nonlinear Semidefinite Programming," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(03), pages 1-25, June.
    6. Takayuki Okuno, 2024. "Local convergence of primal–dual interior point methods for nonlinear semidefinite optimization using the Monteiro–Tsuchiya family of search directions," Computational Optimization and Applications, Springer, vol. 88(2), pages 677-718, June.
    7. Yong-Jin Liu & Li Wang, 2016. "Properties associated with the epigraph of the $$l_1$$ l 1 norm function of projection onto the nonnegative orthant," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 205-221, August.
    8. Gregorio M. Sempere & Welington Oliveira & Johannes O. Royset, 2025. "A Proximal-Type Method for Nonsmooth and Nonconvex Constrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-30, March.
    9. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    10. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.
    11. Shenglong Hu & Guoyin Li & Liqun Qi, 2016. "A Tensor Analogy of Yuan’s Theorem of the Alternative and Polynomial Optimization with Sign structure," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 446-474, February.
    12. Jie Zhang & Xinmin Yang & Gaoxi Li & Ke Zhang, 2023. "A smoothing proximal gradient algorithm with extrapolation for the relaxation of $${\ell_{0}}$$ ℓ 0 regularization problem," Computational Optimization and Applications, Springer, vol. 84(3), pages 737-760, April.
    13. Chengjin Li, 2014. "A New Approximation of the Matrix Rank Function and Its Application to Matrix Rank Minimization," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 569-594, November.
    14. Miju Ahn, 2020. "Consistency bounds and support recovery of d-stationary solutions of sparse sample average approximations," Journal of Global Optimization, Springer, vol. 78(3), pages 397-422, November.
    15. Shiwei Wang & Chao Ding, 2024. "Local convergence analysis of augmented Lagrangian method for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 87(1), pages 39-81, January.
    16. Qingna Li & Donghui Li & Houduo Qi, 2010. "Newton’s Method for Computing the Nearest Correlation Matrix with a Simple Upper Bound," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 546-568, December.
    17. Huixian Wu & Hezhi Luo & Xiaodong Ding & Guanting Chen, 2013. "Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 531-558, December.
    18. Hoai An Le Thi & Tao Pham Dinh, 2024. "Open issues and recent advances in DC programming and DCA," Journal of Global Optimization, Springer, vol. 88(3), pages 533-590, March.
    19. Shiyun Wang, 2020. "The Geometric Properties of a Class of Nonsymmetric Cones," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(3), pages 989-1002, September.
    20. Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-024-02401-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.