IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v201y2024i1d10.1007_s10957-024-02382-w.html
   My bibliography  Save this article

Second-Order Conditions for the Existence of Augmented Lagrange Multipliers for Sparse Optimization

Author

Listed:
  • Chao Kan

    (Harbin Normal University)

  • Wen Song

    (Harbin Normal University)

Abstract

In this paper, we consider the augmented Lagrangian duality for optimization problems with sparsity and abstract set constraints and present second-order conditions for the existence of augmented Lagrange multipliers by calculating the second-order epi-derivative of the augmented Lagrangian. The ingredient of the augmented Lagrangian here includes the indicator function of a sparse set and a composition of the Moreau envelope of the indicator function of a second-order regular set and a twice continuously differentiable mapping. The main process depends heavily on the calculation of the second-order epi-derivative of the indicator function of sparse set which is shown to be second-order regular and also parabolically regular. The second-order sufficient conditions for the sparse nonlinear programming, the sparse inverse covariance selection problem, and the sparse second-order cone programming are obtained as special cases of our general results. We prove that the existence of augmented Lagrange multipliers ensures the exactness of penalty functions and the stability of augmented solutions under small perturbations of the corresponding augmented Lagrange multipliers.

Suggested Citation

  • Chao Kan & Wen Song, 2024. "Second-Order Conditions for the Existence of Augmented Lagrange Multipliers for Sparse Optimization," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 103-129, April.
  • Handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-024-02382-w
    DOI: 10.1007/s10957-024-02382-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02382-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02382-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chao Kan & Wen Song, 2015. "Second-order conditions for existence of augmented Lagrange multipliers for eigenvalue composite optimization problems," Journal of Global Optimization, Springer, vol. 63(1), pages 77-97, September.
    2. R. Tyrrell Rockafellar, 1989. "Second-Order Optimality Conditions in Nonlinear Programming Obtained by Way of Epi-Derivatives," Mathematics of Operations Research, INFORMS, vol. 14(3), pages 462-484, August.
    3. Chao Kan & Wen Song, 2015. "Augmented Lagrangian Duality for Composite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 763-784, June.
    4. Alexander Shapiro & Jie Sun, 2004. "Some Properties of the Augmented Lagrangian in Cone Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 479-491, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen T. V. Hang & Boris S. Mordukhovich & M. Ebrahim Sarabi, 2022. "Augmented Lagrangian method for second-order cone programs under second-order sufficiency," Journal of Global Optimization, Springer, vol. 82(1), pages 51-81, January.
    2. Chao Kan & Wen Song, 2015. "Second-order conditions for existence of augmented Lagrange multipliers for eigenvalue composite optimization problems," Journal of Global Optimization, Springer, vol. 63(1), pages 77-97, September.
    3. Chao Kan & Wen Song, 2015. "Augmented Lagrangian Duality for Composite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 763-784, June.
    4. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    5. Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
    6. Kaiwen Meng & Xiaoqi Yang, 2015. "First- and Second-Order Necessary Conditions Via Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 720-752, June.
    7. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    8. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
    9. J. Sun & L. W. Zhang & Y. Wu, 2006. "Properties of the Augmented Lagrangian in Nonlinear Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 437-456, June.
    10. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions II: Extended Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 745-762, March.
    11. Shiwei Wang & Chao Ding, 2024. "Local convergence analysis of augmented Lagrangian method for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 87(1), pages 39-81, January.
    12. H. Luo & X. Huang & J. Peng, 2012. "Generalized weak sharp minima in cone-constrained convex optimization with applications," Computational Optimization and Applications, Springer, vol. 53(3), pages 807-821, December.
    13. Sheng-Long Hu & Zheng-Hai Huang, 2011. "Alternating direction method for bi-quadratic programming," Journal of Global Optimization, Springer, vol. 51(3), pages 429-446, November.
    14. Stuart M. Harwood, 2021. "Analysis of the Alternating Direction Method of Multipliers for Nonconvex Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-29, March.
    15. H. Luo & H. Wu & G. Chen, 2012. "On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 54(3), pages 599-618, November.
    16. Lorenzo Stella & Andreas Themelis & Panagiotis Patrinos, 2017. "Forward–backward quasi-Newton methods for nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 443-487, July.
    17. Ellen H. Fukuda & Bruno F. Lourenço, 2018. "Exact augmented Lagrangian functions for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 71(2), pages 457-482, November.
    18. R. S. Burachik & X. Q. Yang & Y. Y. Zhou, 2017. "Existence of Augmented Lagrange Multipliers for Semi-infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 471-503, May.
    19. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2015. "On Saddle Points in Semidefinite Optimization via Separation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 113-150, April.
    20. T. Son & D. Kim & N. Tam, 2012. "Weak stability and strong duality of a class of nonconvex infinite programs via augmented Lagrangian," Journal of Global Optimization, Springer, vol. 53(2), pages 165-184, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-024-02382-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.