IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v82y2022i1d10.1007_s10898-021-01068-1.html
   My bibliography  Save this article

Augmented Lagrangian method for second-order cone programs under second-order sufficiency

Author

Listed:
  • Nguyen T. V. Hang

    (Wayne State University
    Vietnam Academy of Science and Technology)

  • Boris S. Mordukhovich

    (Wayne State University)

  • M. Ebrahim Sarabi

    (Miami University)

Abstract

This paper addresses problems of second-order cone programming important in optimization theory and applications. The main attention is paid to the augmented Lagrangian method (ALM) for such problems considered in both exact and inexact forms. Using generalized differential tools of second-order variational analysis, we formulate the corresponding version of second-order sufficiency and use it to establish, among other results, the uniform second-order growth condition for the augmented Lagrangian. The latter allows us to justify the solvability of subproblems in the ALM and to prove the linear primal–dual convergence of this method.

Suggested Citation

  • Nguyen T. V. Hang & Boris S. Mordukhovich & M. Ebrahim Sarabi, 2022. "Augmented Lagrangian method for second-order cone programs under second-order sufficiency," Journal of Global Optimization, Springer, vol. 82(1), pages 51-81, January.
  • Handle: RePEc:spr:jglopt:v:82:y:2022:i:1:d:10.1007_s10898-021-01068-1
    DOI: 10.1007/s10898-021-01068-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01068-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01068-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Tyrrell Rockafellar, 1989. "Second-Order Optimality Conditions in Nonlinear Programming Obtained by Way of Epi-Derivatives," Mathematics of Operations Research, INFORMS, vol. 14(3), pages 462-484, August.
    2. A. Izmailov & A. Kurennoy & M. Solodov, 2015. "Local convergence of the method of multipliers for variational and optimization problems under the noncriticality assumption," Computational Optimization and Applications, Springer, vol. 60(1), pages 111-140, January.
    3. Ashkan Mohammadi & Boris S. Mordukhovich & M. Ebrahim Sarabi, 2020. "Superlinear Convergence of the Sequential Quadratic Method in Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 731-758, September.
    4. Alexander Shapiro & Jie Sun, 2004. "Some Properties of the Augmented Lagrangian in Cone Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 479-491, August.
    5. E. G. Birgin & G. Haeser & A. Ramos, 2018. "Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points," Computational Optimization and Applications, Springer, vol. 69(1), pages 51-75, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pham Duy Khanh & Boris S. Mordukhovich & Vo Thanh Phat & Dat Ba Tran, 2023. "Generalized damped Newton algorithms in nonsmooth optimization via second-order subdifferentials," Journal of Global Optimization, Springer, vol. 86(1), pages 93-122, May.
    2. Nguyen Huy Chieu & Nguyen Thi Quynh Trang & Ha Anh Tuan, 2022. "Quadratic Growth and Strong Metric Subregularity of the Subdifferential for a Class of Non-prox-regular Functions," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1081-1106, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Kan & Wen Song, 2015. "Second-order conditions for existence of augmented Lagrange multipliers for eigenvalue composite optimization problems," Journal of Global Optimization, Springer, vol. 63(1), pages 77-97, September.
    2. Chao Kan & Wen Song, 2015. "Augmented Lagrangian Duality for Composite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 763-784, June.
    3. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    4. Chungen Shen & Lei-Hong Zhang & Wei Liu, 2016. "A stabilized filter SQP algorithm for nonlinear programming," Journal of Global Optimization, Springer, vol. 65(4), pages 677-708, August.
    5. Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
    6. Kaiwen Meng & Xiaoqi Yang, 2015. "First- and Second-Order Necessary Conditions Via Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 720-752, June.
    7. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    8. Muhammad Omair & Mohammed Alkahtani & Kashif Ayaz & Ghulam Hussain & Johannes Buhl, 2022. "Supply Chain Modelling of the Automobile Multi-Stage Production Considering Circular Economy by Waste Management Using Recycling and Reworking Operations," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    9. A. F. Izmailov & M. V. Solodov, 2022. "Perturbed Augmented Lagrangian Method Framework with Applications to Proximal and Smoothed Variants," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 491-522, June.
    10. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
    11. J. Sun & L. W. Zhang & Y. Wu, 2006. "Properties of the Augmented Lagrangian in Nonlinear Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 437-456, June.
    12. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions II: Extended Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 745-762, March.
    13. Muhammad Omair & Misbah Ullah & Baishakhi Ganguly & Sahar Noor & Shahid Maqsood & Biswajit Sarkar, 2019. "The Quantitative Analysis of Workers’ Stress Due to Working Environment in the Production System of the Automobile Part Manufacturing Industry," Mathematics, MDPI, vol. 7(7), pages 1-18, July.
    14. H. Luo & X. Huang & J. Peng, 2012. "Generalized weak sharp minima in cone-constrained convex optimization with applications," Computational Optimization and Applications, Springer, vol. 53(3), pages 807-821, December.
    15. Sheng-Long Hu & Zheng-Hai Huang, 2011. "Alternating direction method for bi-quadratic programming," Journal of Global Optimization, Springer, vol. 51(3), pages 429-446, November.
    16. Stuart M. Harwood, 2021. "Analysis of the Alternating Direction Method of Multipliers for Nonconvex Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-29, March.
    17. Gabriel Haeser, 2018. "A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms," Computational Optimization and Applications, Springer, vol. 70(2), pages 615-639, June.
    18. Luís Felipe Bueno & Gabriel Haeser & Luiz-Rafael Santos, 2020. "Towards an efficient augmented Lagrangian method for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 76(3), pages 767-800, July.
    19. H. Luo & H. Wu & G. Chen, 2012. "On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 54(3), pages 599-618, November.
    20. Lorenzo Stella & Andreas Themelis & Panagiotis Patrinos, 2017. "Forward–backward quasi-Newton methods for nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 443-487, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:82:y:2022:i:1:d:10.1007_s10898-021-01068-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.