IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v200y2024i2d10.1007_s10957-023-02360-8.html
   My bibliography  Save this article

Generalized Multilinear Games and Vertical Tensor Complementarity Problems

Author

Listed:
  • Qingyang Jia

    (Tianjin University)

  • Zheng-Hai Huang

    (Tianjin University)

  • Yong Wang

    (Tianjin University)

Abstract

This paper generalizes the multilinear game where the payoff tensor of each player is fixed to the generalized multilinear game where the payoff tensor of each player is selected from a nonempty set of tensors. We prove the existence of $$\varepsilon $$ ε -Nash equilibria for generalized multilinear games under the assumption that all involved sets of tensors are bounded, and the existence of Nash equilibria for generalized multilinear games under the assumption that all involved sets of tensors are compact. In particular, when all involved sets of tensors are finite, we show that finding a Nash equilibrium point for the generalized multilinear game is equivalent to solving a vertical tensor complementarity problem, and establish a one-to-one correspondence between the Nash equilibrium point of the game and the solution of the vertical tensor complementarity problem.

Suggested Citation

  • Qingyang Jia & Zheng-Hai Huang & Yong Wang, 2024. "Generalized Multilinear Games and Vertical Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 200(2), pages 602-633, February.
  • Handle: RePEc:spr:joptap:v:200:y:2024:i:2:d:10.1007_s10957-023-02360-8
    DOI: 10.1007/s10957-023-02360-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02360-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02360-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R.J. Aumann & S. Hart (ed.), 2002. "Handbook of Game Theory with Economic Applications," Handbook of Game Theory with Economic Applications, Elsevier, edition 1, volume 3, number 3.
    2. C. E. Lemke, 1965. "Bimatrix Equilibrium Points and Mathematical Programming," Management Science, INFORMS, vol. 11(7), pages 681-689, May.
    3. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    4. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, December.
    5. Zheng-Hai Huang & Liqun Qi, 2017. "Formulating an n-person noncooperative game as a tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 66(3), pages 557-576, April.
    6. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part I: Basic Theory," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 1-23, October.
    7. A. Dutta & A. K. Das, 2023. "Homotopy Continuation Method for Discounted Zero-Sum Stochastic Game with ARAT Structure," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 25(03), pages 1-18, September.
    8. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part III: Applications," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 771-791, December.
    9. Gowda, M Seetharama & Sznajder, Roman, 1996. "A Generalization of the Nash Equilibrium Theorem on Bimatrix Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng-Hai Huang & Liqun Qi, 2017. "Formulating an n-person noncooperative game as a tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 66(3), pages 557-576, April.
    2. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    3. Ping-Fan Dai & Shi-Liang Wu, 2022. "The GUS-Property and Modulus-Based Methods for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 976-1006, December.
    4. Ting Zhang & Yong Wang & Zheng-Hai Huang, 2024. "Projected fixed-point method for vertical tensor complementarity problems," Computational Optimization and Applications, Springer, vol. 89(1), pages 219-245, September.
    5. Shouqiang Du & Weiyang Ding & Yimin Wei, 2021. "Acceptable Solutions and Backward Errors for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 260-276, January.
    6. Shouqiang Du & Liyuan Cui & Yuanyuan Chen & Yimin Wei, 2022. "Stochastic Tensor Complementarity Problem with Discrete Distribution," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 912-929, March.
    7. Meng-Meng Zheng & Zheng-Hai Huang & Xiao-Xiao Ma, 2020. "Nonemptiness and Compactness of Solution Sets to Generalized Polynomial Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 80-98, April.
    8. Lu-Bin Cui & Yu-Dong Fan & Yi-Sheng Song & Shi-Liang Wu, 2022. "The Existence and Uniqueness of Solution for Tensor Complementarity Problem and Related Systems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 321-334, January.
    9. Zhenyu Ming & Liping Zhang & Liqun Qi, 2020. "Expected residual minimization method for monotone stochastic tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 77(3), pages 871-896, December.
    10. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    11. Ünsal Özdilek, 2020. "Land and building separation based on Shapley values," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-13, December.
    12. Gonzalez, Stéphane & Grabisch, Michel, 2016. "Multicoalitional solutions," Journal of Mathematical Economics, Elsevier, vol. 64(C), pages 1-10.
    13. Ge Li & Jicheng Li, 2023. "Improved Fixed Point Iterative Methods for Tensor Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 199(2), pages 787-804, November.
    14. Söllner, Matthias, 2008. "Menschliches Verhalten in elektronischen Märkten," Bayreuth Reports on Information Systems Management 34, University of Bayreuth, Chair of Information Systems Management.
    15. Stefano Moretti & Fioravante Patrone, 2008. "Transversality of the Shapley value," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 1-41, July.
    16. Yann BRAOUEZEC & Keyvan KIANI, 2021. "Economic foundations of generalized games with shared constraint: Do binding agreements lead to less Nash equilibria?," Working Papers 2021-ACF-06, IESEG School of Management.
    17. Lawrence C. Y. Choo, 2014. "Trading Participation Rights to the “Red Hat Puzzle”. An Experiment," Discussion Papers 1408, University of Exeter, Department of Economics.
    18. Bharat Adsul & Jugal Garg & Ruta Mehta & Milind Sohoni & Bernhard von Stengel, 2021. "Fast Algorithms for Rank-1 Bimatrix Games," Operations Research, INFORMS, vol. 69(2), pages 613-631, March.
    19. van Damme, E.E.C., 2000. "Non-cooperative Games," Other publications TiSEM 51465233-a356-4d20-acc4-c, Tilburg University, School of Economics and Management.
    20. Hong-Bo Guan & Dong-Hui Li, 2020. "Linearized Methods for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 972-987, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:200:y:2024:i:2:d:10.1007_s10957-023-02360-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.