IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v166y2015i3d10.1007_s10957-015-0716-x.html
   My bibliography  Save this article

On the Existence of Minimizers of Proximity Functions for Split Feasibility Problems

Author

Listed:
  • Xianfu Wang

    (University of British Columbia)

  • Xinmin Yang

    (Chongqing Normal University)

Abstract

Many inverse problems can be formulated as split feasibility problems. To find feasible solutions, one has to minimize proximity functions. We show that the existence of minimizers to the proximity function for Censor–Elfving’s split feasibility problem is equivalent to the existence of projections on appropriate convex sets and provide conditions under which such projections exist. These projections turn out to be the unique optimal solution of their Fenchel–Rockafellar duals and can be computed by the proximal point algorithm efficiently. Applications to linear equations and linear feasibility problems are given.

Suggested Citation

  • Xianfu Wang & Xinmin Yang, 2015. "On the Existence of Minimizers of Proximity Functions for Split Feasibility Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 861-888, September.
  • Handle: RePEc:spr:joptap:v:166:y:2015:i:3:d:10.1007_s10957-015-0716-x
    DOI: 10.1007/s10957-015-0716-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0716-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0716-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Charles Byrne & Yair Censor, 2001. "Proximity Function Minimization Using Multiple Bregman Projections, with Applications to Split Feasibility and Kullback–Leibler Distance Minimization," Annals of Operations Research, Springer, vol. 105(1), pages 77-98, July.
    2. Yair Censor & Wei Chen & Patrick Combettes & Ran Davidi & Gabor Herman, 2012. "On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints," Computational Optimization and Applications, Springer, vol. 51(3), pages 1065-1088, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peichao Duan & Xubang Zheng & Jing Zhao, 2018. "Strong Convergence Theorems of Viscosity Iterative Algorithms for Split Common Fixed Point Problems," Mathematics, MDPI, vol. 7(1), pages 1-14, December.
    2. Yair Censor & Ran Davidi & Gabor T. Herman & Reinhard W. Schulte & Luba Tetruashvili, 2014. "Projected Subgradient Minimization Versus Superiorization," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 730-747, March.
    3. Howard Heaton & Yair Censor, 2019. "Asynchronous sequential inertial iterations for common fixed points problems with an application to linear systems," Journal of Global Optimization, Springer, vol. 74(1), pages 95-119, May.
    4. Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
    5. Paulo Oliveira, 2014. "A strongly polynomial-time algorithm for the strict homogeneous linear-inequality feasibility problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(3), pages 267-284, December.
    6. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    7. Regina S. Burachik & Minh N. Dao & Scott B. Lindstrom, 2021. "Generalized Bregman Envelopes and Proximity Operators," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 744-778, September.
    8. Stéphane Chrétien & Pascal Bondon, 2020. "Projection Methods for Uniformly Convex Expandable Sets," Mathematics, MDPI, vol. 8(7), pages 1-19, July.
    9. Chin How Jeffrey Pang, 2019. "Dykstra’s Splitting and an Approximate Proximal Point Algorithm for Minimizing the Sum of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1019-1049, September.
    10. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    11. Yanni Guo & Xiaozhi Zhao, 2019. "Bounded Perturbation Resilience and Superiorization of Proximal Scaled Gradient Algorithm with Multi-Parameters," Mathematics, MDPI, vol. 7(6), pages 1-14, June.
    12. Aviv Gibali & Karl-Heinz Küfer & Daniel Reem & Philipp Süss, 2018. "A generalized projection-based scheme for solving convex constrained optimization problems," Computational Optimization and Applications, Springer, vol. 70(3), pages 737-762, July.
    13. Ron Aharoni & Yair Censor & Zilin Jiang, 2018. "Finding a best approximation pair of points for two polyhedra," Computational Optimization and Applications, Springer, vol. 71(2), pages 509-523, November.
    14. Yair Censor & Alexander Zaslavski, 2013. "Convergence and perturbation resilience of dynamic string-averaging projection methods," Computational Optimization and Applications, Springer, vol. 54(1), pages 65-76, January.
    15. Yen-Huan Li & Volkan Cevher, 2019. "Convergence of the Exponentiated Gradient Method with Armijo Line Search," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 588-607, May.
    16. Wenma Jin & Yair Censor & Ming Jiang, 2016. "Bounded perturbation resilience of projected scaled gradient methods," Computational Optimization and Applications, Springer, vol. 63(2), pages 365-392, March.
    17. Hongjin He & Chen Ling & Hong-Kun Xu, 2015. "A Relaxed Projection Method for Split Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 213-233, July.
    18. Charles L. Byrne, 2013. "Alternating Minimization as Sequential Unconstrained Minimization: A Survey," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 554-566, March.
    19. Souza, Sissy da S. & Oliveira, P.R. & da Cruz Neto, J.X. & Soubeyran, A., 2010. "A proximal method with separable Bregman distances for quasiconvex minimization over the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 201(2), pages 365-376, March.
    20. Baoyu Fan & Han Ma & Yue Liu & Xiaochen Yuan & Wei Ke, 2024. "KDTM: Multi-Stage Knowledge Distillation Transfer Model for Long-Tailed DGA Detection," Mathematics, MDPI, vol. 12(5), pages 1-19, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:166:y:2015:i:3:d:10.1007_s10957-015-0716-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.