IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v146y2010i3d10.1007_s10957-010-9684-3.html
   My bibliography  Save this article

Minimization of Isotonic Functions Composed of Fractions

Author

Listed:
  • J.-Y. Lin

    (National Chiayi University)

  • S. Schaible

    (Chung Yuan Christian University)

  • R.-L. Sheu

    (National Cheng Kung University)

Abstract

In this paper, we introduce a class of minimization problems whose objective function is the composite of an isotonic function and finitely many ratios. Examples of an isotonic function include the max-operator, summation, and many others, so it implies a much wider class than the classical fractional programming containing the minimax fractional program as well as the sum-of-ratios problem. Our intention is to develop a generic “Dinkelbach-like” algorithm suitable for all fractional programs of this type. Such an attempt has never been successful before, including an early effort for the sum-of-ratios problem. The difficulty is now overcome by extending the cutting plane method of Barros and Frenk (in J. Optim. Theory Appl. 87:103–120, 1995). Based on different isotonic operators, various cuts can be created respectively to either render a Dinkelbach-like approach for the sum-of-ratios problem or recover the classical Dinkelbach-type algorithm for the min-max fractional programming.

Suggested Citation

  • J.-Y. Lin & S. Schaible & R.-L. Sheu, 2010. "Minimization of Isotonic Functions Composed of Fractions," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 581-601, September.
  • Handle: RePEc:spr:joptap:v:146:y:2010:i:3:d:10.1007_s10957-010-9684-3
    DOI: 10.1007/s10957-010-9684-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-010-9684-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-010-9684-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. P. Benson, 2002. "Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 1-29, January.
    2. Y. Almogy & O. Levin, 1971. "A Class of Fractional Programming Problems," Operations Research, INFORMS, vol. 19(1), pages 57-67, February.
    3. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojtaba Borza & Azmin Sham Rambely, 2021. "A Linearization to the Sum of Linear Ratios Programming Problem," Mathematics, MDPI, vol. 9(9), pages 1-10, April.
    2. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    3. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "Rouben Ranking Function and parametric approach to quadratically constrained multiobjective quadratic fractional programming with trapezoidal fuzzy number coefficients," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 923-932, April.
    4. Gruzdeva, Tatiana V. & Strekalovsky, Alexander S., 2018. "On solving the sum-of-ratios problem," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 260-269.
    5. Juan S. Borrero & Colin Gillen & Oleg A. Prokopyev, 2017. "Fractional 0–1 programming: applications and algorithms," Journal of Global Optimization, Springer, vol. 69(1), pages 255-282, September.
    6. Vandana Goyal & Namrata Rani & Deepak Gupta, 2021. "Parametric approach to quadratically constrained multi-level multi-objective quadratic fractional programming," OPSEARCH, Springer;Operational Research Society of India, vol. 58(3), pages 557-574, September.
    7. Ruan, N. & Gao, D.Y., 2015. "Global solutions to fractional programming problem with ratio of nonconvex functions," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 66-72.
    8. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "An algorithm for quadratically constrained multi-objective quadratic fractional programming with pentagonal fuzzy numbers," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 49-71.
    9. Suvasis Nayak & Akshay Kumar Ojha, 2019. "Solution approach to multi-objective linear fractional programming problem using parametric functions," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 174-190, March.
    10. S. Morteza Mirdehghan & Hassan Rostamzadeh, 2016. "Finding the Efficiency Status and Efficient Projection in Multiobjective Linear Fractional Programming: A Linear Programming Technique," Journal of Optimization, Hindawi, vol. 2016, pages 1-8, September.
    11. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    12. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    13. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    14. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    15. Cook, Wade D. & Zhu, Joe, 2007. "Within-group common weights in DEA: An analysis of power plant efficiency," European Journal of Operational Research, Elsevier, vol. 178(1), pages 207-216, April.
    16. Laurent Alfandari & Alborz Hassanzadeh & Ivana Ljubić, 2021. "An Exact Method for Assortment Optimization under the Nested Logit Model," Working Papers hal-02463159, HAL.
    17. A. Roubi, 2000. "Method of Centers for Generalized Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 123-143, October.
    18. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    19. Keshav Singh & Meng-Lin Ku & Sudip Biswas & Tharmalingam Ratnarajah, 2017. "Energy-Efficient Subcarrier Pairing and Power Allocation for DF Relay Networks with an Eavesdropper," Energies, MDPI, vol. 10(12), pages 1-13, November.
    20. Claassen, G.D.H., 2014. "Mixed integer (0–1) fractional programming for decision support in paper production industry," Omega, Elsevier, vol. 43(C), pages 21-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:146:y:2010:i:3:d:10.1007_s10957-010-9684-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.