IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v135y2007i3d10.1007_s10957-007-9286-x.html
   My bibliography  Save this article

New Type of Generalized Vector Quasiequilibrium Problem

Author

Listed:
  • J. Y. Fu

    (Nanchang University)

  • S. H. Wang

    (Nanchang University)

  • Z. D. Huang

    (Nanchang University)

Abstract

In this paper, we introduce a new type of vector quasiequilibrium problem with set-valued mappings and moving cones. By using the scalarization method and fixed-point theorem, we obtain its existence theorem. As applications, we derive some existence theorems for vector variational inequalities and vector complementarity problems.

Suggested Citation

  • J. Y. Fu & S. H. Wang & Z. D. Huang, 2007. "New Type of Generalized Vector Quasiequilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 643-652, December.
  • Handle: RePEc:spr:joptap:v:135:y:2007:i:3:d:10.1007_s10957-007-9286-x
    DOI: 10.1007/s10957-007-9286-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9286-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9286-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun-Yi Fu & An-Hua Wan, 2002. "Generalized vector equilibrium problems with set-valued mappings," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 56(2), pages 259-268, November.
    2. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    3. Q.H. Ansari & I.V. Konnov & J.C. Yao, 2002. "Characterizations of Solutions for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(3), pages 435-447, June.
    4. J. Fu, 1997. "Simultaneous Vector Variational Inequalities and Vector Implicit Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 93(1), pages 141-151, April.
    5. M. Bianchi & N. Hadjisavvas & S. Schaible, 1997. "Vector Equilibrium Problems with Generalized Monotone Bifunctions," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 527-542, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pham Huu Sach & Le Anh Tuan, 2022. "Existence of Solutions of Bifunction-Set Optimization Problems in Metric Spaces," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 195-225, January.
    2. P. H. Sach & L. J. Lin & L. A. Tuan, 2010. "Generalized Vector Quasivariational Inclusion Problems with Moving Cones," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 607-620, December.
    3. Pham Huu Sach, 2018. "Solution Existence in Bifunction-Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Y. Fu, 2006. "Stampacchia Generalized Vector Quasiequilibrium Problems and Vector Saddle Points," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 605-619, March.
    2. Tran Van Su, 2018. "New optimality conditions for unconstrained vector equilibrium problem in terms of contingent derivatives in Banach spaces," 4OR, Springer, vol. 16(2), pages 173-198, June.
    3. Ouayl Chadli & Qamrul Hasan Ansari & Suliman Al-Homidan, 2017. "Existence of Solutions and Algorithms for Bilevel Vector Equilibrium Problems: An Auxiliary Principle Technique," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 726-758, March.
    4. N. J. Huang & J. Li & J. C. Yao, 2007. "Gap Functions and Existence of Solutions for a System of Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 201-212, May.
    5. I. V. Konnov & S. Schaible, 2000. "Duality for Equilibrium Problems under Generalized Monotonicity," Journal of Optimization Theory and Applications, Springer, vol. 104(2), pages 395-408, February.
    6. Lai-Jiu Lin & Qamrul Ansari & Yu-Jen Huang, 2007. "Some existence results for solutions of generalized vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 85-98, February.
    7. Adela Capătă, 2011. "Existence results for proper efficient solutions of vector equilibrium problems and applications," Journal of Global Optimization, Springer, vol. 51(4), pages 657-675, December.
    8. N. X. Hai & P. Q. Khanh, 2007. "Existence of Solutions to General Quasiequilibrium Problems and Applications," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 317-327, June.
    9. Pham Huu Sach & Le Anh Tuan & Nguyen The Vinh, 2025. "Vector Quasi-Equilibria for the Sum of Two Multivalued Trifunctions," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-27, March.
    10. Wensheng Jia & Xiaoling Qiu & Dingtao Peng, 2020. "An Approximation Theorem for Vector Equilibrium Problems under Bounded Rationality," Mathematics, MDPI, vol. 8(1), pages 1-9, January.
    11. P. H. Sach, 2008. "On a Class of Generalized Vector Quasiequilibrium Problems with Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 337-350, November.
    12. Q.H. Ansari & I.V. Konnov & J.C. Yao, 2002. "Characterizations of Solutions for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(3), pages 435-447, June.
    13. Robert M. Anderson & Haosui Duanmu & M. Ali Khan & Metin Uyanik, 2022. "Walrasian equilibrium theory with and without free-disposal: theorems and counterexamples in an infinite-agent context," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 387-412, April.
    14. M. Ali Khan & Richard P. McLean & Metin Uyanik, 2025. "Excess demand approach with non-convexity and discontinuity: a generalization of the Gale–Nikaido–Kuhn–Debreu lemma," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 79(4), pages 1167-1190, June.
    15. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    16. L. Q. Anh & P. Q. Khanh, 2007. "On the Stability of the Solution Sets of General Multivalued Vector Quasiequilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 135(2), pages 271-284, November.
    17. Q. H. Ansari & L. J. Lin & L. B. Su, 2005. "Systems of Simultaneous Generalized Vector Quasiequilibrium Problems and their Applications," Journal of Optimization Theory and Applications, Springer, vol. 127(1), pages 27-44, October.
    18. Llinares, Juan-Vicente, 1998. "Unified treatment of the problem of existence of maximal elements in binary relations: a characterization," Journal of Mathematical Economics, Elsevier, vol. 29(3), pages 285-302, April.
    19. Tian, Guoqiang, 1991. "Generalized quasi-variational-like inequality problem," MPRA Paper 41219, University Library of Munich, Germany, revised 26 May 1992.
    20. Monica Patriche, 2013. "Fixed Point and Equilibrium Theorems in a Generalized Convexity Framework," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 701-715, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:135:y:2007:i:3:d:10.1007_s10957-007-9286-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.