IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v172y2017i3d10.1007_s10957-017-1062-y.html
   My bibliography  Save this article

Existence of Solutions and Algorithms for Bilevel Vector Equilibrium Problems: An Auxiliary Principle Technique

Author

Listed:
  • Ouayl Chadli

    (Ibn Zohr University)

  • Qamrul Hasan Ansari

    (Aligarh Muslim University
    King Fahd University of Petroleum and Minerals)

  • Suliman Al-Homidan

    (King Fahd University of Petroleum and Minerals)

Abstract

The main goal of this paper is to introduce and study bilevel vector equilibrium problems. We first establish some existence results for solutions of vector equilibrium problems and mixed vector equilibrium problems. We study the existence of solutions of bilevel vector equilibrium problems by considering a vector Thikhonov-type regularization procedure. By using this regularization procedure and existence results for mixed vector equilibrium problems, we establish some existence results for solutions of bilevel vector equilibrium problems. By using the auxiliary principle, we propose an algorithm for finding the approximate solutions of bilevel vector equilibrium problems. The strong convergence of the proposed algorithm is also studied.

Suggested Citation

  • Ouayl Chadli & Qamrul Hasan Ansari & Suliman Al-Homidan, 2017. "Existence of Solutions and Algorithms for Bilevel Vector Equilibrium Problems: An Auxiliary Principle Technique," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 726-758, March.
  • Handle: RePEc:spr:joptap:v:172:y:2017:i:3:d:10.1007_s10957-017-1062-y
    DOI: 10.1007/s10957-017-1062-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1062-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1062-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Y. C. Liou & X. Q. Yang & J. C. Yao, 2005. "Mathematical Programs with Vector Optimization Constraints," Journal of Optimization Theory and Applications, Springer, vol. 126(2), pages 345-355, August.
    2. Gábor Kassay & Mihaela Miholca, 2015. "Existence results for vector equilibrium problems given by a sum of two functions," Journal of Global Optimization, Springer, vol. 63(1), pages 195-211, September.
    3. Abdellatif Moudafi, 2010. "Proximal methods for a class of bilevel monotone equilibrium problems," Journal of Global Optimization, Springer, vol. 47(2), pages 287-292, June.
    4. X. P. Ding, 2010. "Auxiliary Principle and Algorithm for Mixed Equilibrium Problems and Bilevel Mixed Equilibrium Problems in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 347-357, August.
    5. Q. Ansari & W. Oettli & D. Schläger, 1997. "A generalization of vectorial equilibria," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(2), pages 147-152, June.
    6. H. Bonnel & J. Morgan, 2006. "Semivectorial Bilevel Optimization Problem: Penalty Approach," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 365-382, December.
    7. O. Chaldi & Z. Chbani & H. Riahi, 2000. "Equilibrium Problems with Generalized Monotone Bifunctions and Applications to Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 105(2), pages 299-323, May.
    8. N. Hadjisavvas & S. Schaible, 1998. "From Scalar to Vector Equilibrium Problems in the Quasimonotone Case," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 297-309, February.
    9. Q.H. Ansari & I.V. Konnov & J.C. Yao, 2002. "Characterizations of Solutions for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(3), pages 435-447, June.
    10. Q. H. Ansari & I. V. Konnov & J. C. Yao, 2001. "Existence of a Solution and Variational Principles for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 481-492, September.
    11. M. Bianchi & N. Hadjisavvas & S. Schaible, 1997. "Vector Equilibrium Problems with Generalized Monotone Bifunctions," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 527-542, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lam Quoc Anh & Tran Quoc Duy & Le Dung Muu & Truong Van Tri, 2021. "The Tikhonov regularization for vector equilibrium problems," Computational Optimization and Applications, Springer, vol. 78(3), pages 769-792, April.
    2. Gayatri Pany & Ram N. Mohapatra & Sabyasachi Pani, 2018. "Solution of a class of equilibrium problems and variational inequalities in FC spaces," Annals of Operations Research, Springer, vol. 269(1), pages 565-582, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wensheng Jia & Xiaoling Qiu & Dingtao Peng, 2020. "An Approximation Theorem for Vector Equilibrium Problems under Bounded Rationality," Mathematics, MDPI, vol. 8(1), pages 1-9, January.
    2. Lam Quoc Anh & Tran Quoc Duy & Le Dung Muu & Truong Van Tri, 2021. "The Tikhonov regularization for vector equilibrium problems," Computational Optimization and Applications, Springer, vol. 78(3), pages 769-792, April.
    3. L.J. Lin & Q.H. Ansari & J.Y. Wu, 2003. "Geometric Properties and Coincidence Theorems with Applications to Generalized Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 117(1), pages 121-137, April.
    4. Q. H. Ansari & I. V. Konnov & J. C. Yao, 2001. "Existence of a Solution and Variational Principles for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 481-492, September.
    5. Tran Van Su, 2018. "New optimality conditions for unconstrained vector equilibrium problem in terms of contingent derivatives in Banach spaces," 4OR, Springer, vol. 16(2), pages 173-198, June.
    6. J. Y. Fu, 2006. "Stampacchia Generalized Vector Quasiequilibrium Problems and Vector Saddle Points," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 605-619, March.
    7. Szilárd László, 2016. "Vector Equilibrium Problems on Dense Sets," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 437-457, August.
    8. Adela Capătă, 2011. "Existence results for proper efficient solutions of vector equilibrium problems and applications," Journal of Global Optimization, Springer, vol. 51(4), pages 657-675, December.
    9. Pham Huu Sach & Le Anh Tuan & Nguyen The Vinh, 2025. "Vector Quasi-Equilibria for the Sum of Two Multivalued Trifunctions," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-27, March.
    10. N. J. Huang & J. Li & J. C. Yao, 2007. "Gap Functions and Existence of Solutions for a System of Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 201-212, May.
    11. G. Bento & J. Cruz Neto & J. Lopes & A. Soares Jr & Antoine Soubeyran, 2016. "Generalized Proximal Distances for Bilevel Equilibrium Problems," Post-Print hal-01690192, HAL.
    12. Xie Ding, 2012. "Existence and iterative algorithm of solutions for a class of bilevel generalized mixed equilibrium problems in Banach spaces," Journal of Global Optimization, Springer, vol. 53(3), pages 525-537, July.
    13. M. Fakhar & J. Zafarani, 2008. "Generalized Symmetric Vector Quasiequilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 397-409, March.
    14. N. X. Hai & P. Q. Khanh, 2007. "Existence of Solutions to General Quasiequilibrium Problems and Applications," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 317-327, June.
    15. X. H. Gong, 2008. "Continuity of the Solution Set to Parametric Weak Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 35-46, October.
    16. Monica Bianchi & Siegfried Schaible, 2004. "Equilibrium Problems under Generalized Convexity and Generalized Monotonicity," Journal of Global Optimization, Springer, vol. 30(2), pages 121-134, November.
    17. X. Ding & Y. Liou & J. Yao, 2012. "Existence and algorithms for bilevel generalized mixed equilibrium problems in Banach spaces," Journal of Global Optimization, Springer, vol. 53(2), pages 331-346, June.
    18. X. H. Gong, 2007. "Connectedness of the Solution Sets and Scalarization for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 151-161, May.
    19. Jian-Wen Peng & Soon-Yi Wu & Yan Wang, 2012. "Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems with functional constraints," Journal of Global Optimization, Springer, vol. 52(4), pages 779-795, April.
    20. O. Chadli & S. Schaible & J. C. Yao, 2004. "Regularized Equilibrium Problems with Application to Noncoercive Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 571-596, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:172:y:2017:i:3:d:10.1007_s10957-017-1062-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.