Lower-Order Penalization Approach to Nonlinear Semidefinite Programming
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-006-9055-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- X. X. Huang & X. Q. Yang, 2003. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 533-552, August.
- NESTEROV, Yu. & WOLKOWICZ, Henry & YE, Yinyu, 2000. "Semidefinite programming relaxations of nonconvex quadratic optimization," LIDAM Reprints CORE 1471, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- J. Frédéric Bonnans & Roberto Cominetti & Alexander Shapiro, 1998. "Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 806-831, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- X. X. Huang, 2012. "Calmness and Exact Penalization in Constrained Scalar Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 108-119, July.
- Huixian Wu & Hezhi Luo & Xiaodong Ding & Guanting Chen, 2013. "Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 531-558, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jinchuan Zhou & Jein-Shan Chen, 2015. "On the existence of saddle points for nonlinear second-order cone programming problems," Journal of Global Optimization, Springer, vol. 62(3), pages 459-480, July.
- Xiaoqi Yang & Zhangyou Chen & Jinchuan Zhou, 2016. "Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 984-1012, June.
- de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Discussion Paper 2006-85, Tilburg University, Center for Economic Research.
- J. Zhai & X. X. Huang, 2014. "Calmness and Exact Penalization in Vector Optimization under Nonlinear Perturbations," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 856-872, September.
- Yaohua Hu & Carisa Kwok Wai Yu & Xiaoqi Yang, 2019. "Incremental quasi-subgradient methods for minimizing the sum of quasi-convex functions," Journal of Global Optimization, Springer, vol. 75(4), pages 1003-1028, December.
- de Klerk, E. & Laurent, M., 2010. "Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube," Other publications TiSEM 619d9658-77df-4b5e-9868-0, Tilburg University, School of Economics and Management.
- Temadher A. Almaadeed & Saeid Ansary Karbasy & Maziar Salahi & Abdelouahed Hamdi, 2022. "On Indefinite Quadratic Optimization over the Intersection of Balls and Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 246-264, July.
- Alexander Shapiro, 2005. "Sensitivity Analysis of Parameterized Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 109-126, February.
- Kaiwen Meng & Xiaoqi Yang, 2015. "First- and Second-Order Necessary Conditions Via Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 720-752, June.
- M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
- Y. Y. Zhou & X. Q. Yang, 2009. "Duality and Penalization in Optimization via an Augmented Lagrangian Function with Applications," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 171-188, January.
- de Klerk, E. & den Hertog, D. & Elfadul, G.E.E., 2005. "On the Complexity of Optimization over the Standard Simplex," Other publications TiSEM 3789955a-6533-4a4e-aca2-6, Tilburg University, School of Economics and Management.
- Godai Azuma & Mituhiro Fukuda & Sunyoung Kim & Makoto Yamashita, 2022. "Exact SDP relaxations of quadratically constrained quadratic programs with forest structures," Journal of Global Optimization, Springer, vol. 82(2), pages 243-262, February.
- Alexander Shapiro, 2016. "Differentiability Properties of Metric Projections onto Convex Sets," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 953-964, June.
- S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 738-762, June.
- Defeng Sun, 2006. "The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 761-776, November.
- S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
- de Klerk, E. & den Hertog, D. & Elabwabi, G., 2008.
"On the complexity of optimization over the standard simplex,"
European Journal of Operational Research, Elsevier, vol. 191(3), pages 773-785, December.
- de Klerk, E. & den Hertog, D. & Elfadul, G.E.E., 2005. "On the Complexity of Optimization over the Standard Simplex," Discussion Paper 2005-125, Tilburg University, Center for Economic Research.
- M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
- Alexander Shapiro & Jie Sun, 2004. "Some Properties of the Augmented Lagrangian in Cone Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 479-491, August.
More about this item
Keywords
Semidefinite programming; lower-order penalty methods; Ekeland variational principle; optimality conditions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:132:y:2007:i:1:d:10.1007_s10957-006-9055-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.