IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i4d10.1007_s10845-024-02392-5.html
   My bibliography  Save this article

Unbalance prediction method of aero-engine saddle rotor based on deep belief networks and GA-BP intelligent learning

Author

Listed:
  • Huilin Wu

    (Harbin Institute of Technology
    Ministry of Industry and Information Technology)

  • Chuanzhi Sun

    (Harbin Institute of Technology
    Ministry of Industry and Information Technology)

  • Qing Lu

    (Harbin Institute of Technology
    Ministry of Industry and Information Technology
    Beijing Power Machinery Institute)

  • Yinchu Wang

    (Harbin Institute of Technology
    Ministry of Industry and Information Technology
    Southeast University)

  • Yongmeng Liu

    (Harbin Institute of Technology
    Ministry of Industry and Information Technology)

  • Limin Zou

    (Harbin Institute of Technology
    Ministry of Industry and Information Technology)

  • Jiubin Tan

    (Harbin Institute of Technology
    Ministry of Industry and Information Technology)

Abstract

Aiming at the problems of complex and time-consuming process of manual adjustment of eccentricity and tilt in the evaluation of machining error of aero-engine saddle rotor, and inaccurate measurement of unbalance after multi-stage rotor assembly, this paper proposes an unbalance prediction method based on Genetic Algorithm Back Propagation (GA-BP) neural network and deep belief networks (DBN). Firstly, according to the definition of single-stage rotor machining error, the influence source of saddle rotor machining error and the evaluation of machining error are analyzed. Secondly, GA-BP neural network is established to obtain the concentricity and flatness of saddle rotors at all stages as the error source of unbalance. Then, the output of the GA-BP neural network is used as the input of the DBN to establish the unbalance prediction network model. Finally, the experimental verification is carried out based on the experimental measurement data of an engine rotor unbalance. The results show that the mean value and root mean square error (RMSE) of the unbalance are 16.72 g·mm and 32.71 g·mm respectively, and R-squared (R2) determination coefficient is 0.96 when the 80 groups of samples are tested by the prediction method of DBN. Compared with the method based on the traditional error transfer model, the proposed method based on DBN and GA-BP reduces the average error and mean square error by 86.08% and 75.97% respectively, which greatly reduces the measurement error of rotor unbalance. Therefore, this method can provide technical guidance for the optimal assembly of multi-stage rotors, thereby improving the assembly quality of multi-stage rotors.

Suggested Citation

  • Huilin Wu & Chuanzhi Sun & Qing Lu & Yinchu Wang & Yongmeng Liu & Limin Zou & Jiubin Tan, 2025. "Unbalance prediction method of aero-engine saddle rotor based on deep belief networks and GA-BP intelligent learning," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2829-2840, April.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02392-5
    DOI: 10.1007/s10845-024-02392-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02392-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02392-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xinhua Yao & Di Wang & Tao Yu & Congcong Luan & Jianzhong Fu, 2023. "A machining feature recognition approach based on hierarchical neural network for multi-feature point cloud models," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2599-2610, August.
    2. Zhe Li & Yi Wang & Kesheng Wang, 2020. "A data-driven method based on deep belief networks for backlash error prediction in machining centers," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1693-1705, October.
    3. Yuhang Pan & Yonghao Wang & Ping Zhou & Ying Yan & Dongming Guo, 2020. "Activation functions selection for BP neural network model of ground surface roughness," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1825-1836, December.
    4. Chenglin Li & Baohai Wu & Zhao Zhang & Ying Zhang, 2023. "A novel process planning method of 3 + 2-axis additive manufacturing for aero-engine blade based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 2027-2042, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqar Ahmed Khan & Mahmoud Masoud & Abdelrahman E. E. Eltoukhy & Mehran Ullah, 2025. "Stacked encoded cascade error feedback deep extreme learning machine network for manufacturing order completion time," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1313-1339, February.
    2. Xubao Liu & Yuhang Pan & Ying Yan & Yonghao Wang & Ping Zhou, 2022. "Adaptive BP Network Prediction Method for Ground Surface Roughness with High-Dimensional Parameters," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
    3. Zengya Zhao & Sibao Wang & Zehua Wang & Shilong Wang & Chi Ma & Bo Yang, 2022. "Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 943-952, April.
    4. Christopher Hagedorn & Johannes Huegle & Rainer Schlosser, 2022. "Understanding unforeseen production downtimes in manufacturing processes using log data-driven causal reasoning," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2027-2043, October.
    5. Ziyuan Xie & Fan Chen & Lu Wang & Wenjun Ge & Wentao Yan, 2024. "Data-driven prediction of keyhole features in metal additive manufacturing based on physics-based simulation," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 2313-2326, June.
    6. Mohamed Elhefnawy & Ahmed Ragab & Mohamed-Salah Ouali, 2022. "Fault classification in the process industry using polygon generation and deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1531-1544, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:4:d:10.1007_s10845-024-02392-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.