IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i1d10.1007_s10845-022-02052-6.html
   My bibliography  Save this article

Dynamic spatial–temporal graph-driven machine remaining useful life prediction method using graph data augmentation

Author

Listed:
  • Chaoying Yang

    (Huazhong University of Science and Technology)

  • Jie Liu

    (Huazhong University of Science and Technology)

  • Kaibo Zhou

    (Huazhong University of Science and Technology)

  • Xinyu Li

    (Huazhong University of Science and Technology)

Abstract

It is beneficial to maintain the normal operation of machines by conducting remaining useful life (RUL) prediction. Recently, graph data-driven machine RUL prediction methods have made a great success, since graph can model spatial and temporal dependencies of signals. However, the constructed graphs still have some limitations: (1) In the practical industrial production, the installation of multi-sensor networks is expensive and hard to achieve, so the single sensor is commonly used for data monitoring. However, most of these methods constructed graphs by establishing relationships between the different sensors, which are completely unsuitable for prediction tasks in single-sensor scenarios. (2) The quality of constructed graph is low, where the graph structure is fixed, failing in representing the machine degradation process. To overcome these limitations, a dynamic spatial–temporal (ST) graph-driven machine RUL prediction method using graph data augmentation (GDA) is proposed. The ST graph is constructed using short-time Fourier transform, capturing the frequency-domain and time-domain information hidden in the signals. Then, a GDA framework is designed to generate dynamic ST graphs, enlarging the structural differences of subgraphs. Subsequently, a GDA-based graph deep learning prediction model is constructed for dynamic ST graph-based RUL prediction, where an autoencoder-based graph embedding module is designed to replace simple Readout. Verification experiments are conducted on two case studies, and the results show that the proposed prediction method achieves a competitive performance.

Suggested Citation

  • Chaoying Yang & Jie Liu & Kaibo Zhou & Xinyu Li, 2024. "Dynamic spatial–temporal graph-driven machine remaining useful life prediction method using graph data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 355-366, January.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:1:d:10.1007_s10845-022-02052-6
    DOI: 10.1007/s10845-022-02052-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-02052-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-02052-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pradeep Kundu & Seema Chopra & Bhupesh K. Lad, 2019. "Multiple failure behaviors identification and remaining useful life prediction of ball bearings," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1795-1807, April.
    2. Tae San Kim & So Young Sohn, 2021. "Multitask learning for health condition identification and remaining useful life prediction: deep convolutional neural network approach," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2169-2179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Muhammad Amir Khan & Bilal Asad & Karolina Kudelina & Toomas Vaimann & Ants Kallaste, 2022. "The Bearing Faults Detection Methods for Electrical Machines—The State of the Art," Energies, MDPI, vol. 16(1), pages 1-54, December.
    3. Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Xuejun Zhao & Yong Qin & Changbo He & Limin Jia, 2022. "Underdetermined blind source extraction of early vehicle bearing faults based on EMD and kernelized correlation maximization," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 185-201, January.
    5. Kumar, Anil & Parkash, Chander & Vashishtha, Govind & Tang, Hesheng & Kundu, Pradeep & Xiang, Jiawei, 2022. "State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Han Cheng & Xianguang Kong & Qibin Wang & Hongbo Ma & Shengkang Yang & Gaige Chen, 2023. "Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 587-613, February.
    7. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    8. Zhang, Zhiyao & Chen, Xiaohui & Zio, Enrico & Li, Longxiao, 2023. "Multi-task learning boosted predictions of the remaining useful life of aero-engines under scenarios of working-condition shift," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Dong, Shaojiang & Xiao, Jiafeng & Hu, Xiaolin & Fang, Nengwei & Liu, Lanhui & Yao, Jinbao, 2023. "Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Zhang, Yadong & Zhang, Chao & Wang, Shaoping & Dui, Hongyan & Chen, Rentong, 2024. "Health indicators for remaining useful life prediction of complex systems based on long short-term memory network and improved particle filter," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:1:d:10.1007_s10845-022-02052-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.