IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i5d10.1007_s10845-022-01925-0.html
   My bibliography  Save this article

An edge-based algorithm for tool wear monitoring in repetitive milling processes

Author

Listed:
  • Rui Liu

    (Rochester Institute of Technology)

Abstract

In the era of Industry 4.0, cloud computing has attracted a lot of attention from industrial organizations in realizing smart manufacturing. However, considering the latency issue of cloud computing, the time-sensitive data are more suitable to be processed through edge computing close to the data source, which has been recognized as a potential solution to enable the real-time monitoring in the machining industry, especially for the small and medium-sized manufacturers. Due to the limitations of available data and computing capability at the edge location, it is still very challenging to realize edge computing for complex machining monitoring. To satisfy this research need, a calibration-based tool condition monitoring (TCM) is developed to monitor the tool wear progression in repetitive machining processes by comparing the characteristic signals generated by the reference cutting tools in the calibration procedure with the signal generated by the cutting tool being monitored through a concise similarity analysis. The proposed algorithm can be easily integrated into typical cyber-psychical systems to realize the edge computing in a very efficient and flexible way. To validate the performance of the proposed algorithm, a case study is demonstrated for tool wear monitoring of repetitive milling processes. Experimental validation has shown that the proposed calibration-based TCM algorithm can effectively realize the edge computing in tool wear monitoring through a simple calculation.

Suggested Citation

  • Rui Liu, 2023. "An edge-based algorithm for tool wear monitoring in repetitive milling processes," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2333-2343, June.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:5:d:10.1007_s10845-022-01925-0
    DOI: 10.1007/s10845-022-01925-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01925-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01925-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xifan Yao & Jiajun Zhou & Yingzi Lin & Yun Li & Hongnian Yu & Ying Liu, 2019. "Smart manufacturing based on cyber-physical systems and beyond," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2805-2817, December.
    2. Jinjiang Wang & Laibin Zhang & Lixiang Duan & Robert X. Gao, 2017. "A new paradigm of cloud-based predictive maintenance for intelligent manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1125-1137, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuting Wang & Jie Meng & Yuanlong Xie & Liquan Jiang & Han Ding & Xinyu Shao, 2023. "Reference training system for intelligent manufacturing talent education: platform construction and curriculum development," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1125-1164, March.
    2. Xiaobao Zhu & Jing Shi & Fengjie Xie & Rouqi Song, 2020. "Pricing strategy and system performance in a cloud-based manufacturing system built on blockchain technology," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1985-2002, December.
    3. Osterrieder, Philipp & Budde, Lukas & Friedli, Thomas, 2020. "The smart factory as a key construct of industry 4.0: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 221(C).
    4. Haibo Yi, 2021. "A post-quantum secure communication system for cloud manufacturing safety," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 679-688, March.
    5. Sihan Huang & Guoxin Wang & Shiqi Nie & Bin Wang & Yan Yan, 2023. "Part family formation method for delayed reconfigurable manufacturing system based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2849-2863, August.
    6. Jens Passlick & Sonja Dreyer & Daniel Olivotti & Lukas Grützner & Dennis Eilers & Michael H. Breitner, 2021. "Predictive maintenance as an internet of things enabled business model: A taxonomy," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(1), pages 67-87, March.
    7. Neeraj Gupta & Saurabh Gupta & Mahdi Khosravy & Nilanjan Dey & Nisheeth Joshi & Rubén González Crespo & Nilesh Patel, 2021. "RETRACTED ARTICLE: Economic IoT strategy: the future technology for health monitoring and diagnostic of agriculture vehicles," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1117-1128, April.
    8. Camélia Dadouchi & Bruno Agard, 2021. "Recommender systems as an agility enabler in supply chain management," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1229-1248, June.
    9. Constantin Aurelian Ionescu & Melinda Timea Fülöp & Dan Ioan Topor & Sorinel Căpușneanu & Teodora Odett Breaz & Sorina Geanina Stănescu & Mihaela Denisa Coman, 2021. "The New Era of Business Digitization through the Implementation of 5G Technology in Romania," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    10. Hien Nguyen Ngoc & Ganix Lasa & Ion Iriarte, 2022. "Human-centred design in industry 4.0: case study review and opportunities for future research," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 35-76, January.
    11. Benjamin Lutz & Dominik Kisskalt & Andreas Mayr & Daniel Regulin & Matteo Pantano & Jörg Franke, 2021. "In-situ identification of material batches using machine learning for machining operations," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1485-1495, June.
    12. Jorge L. Alonso-Perez & Selene L. Cardenas-Maciel & Balter Trujillo-Navarrete & Edgar A. Reynoso-Soto & Nohe R. Cazarez-Cazarez, 2022. "An approach for designing smart manufacturing for the research and development of dye-sensitize solar cell," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2307-2320, December.
    13. Gautam Dutta & Ravinder Kumar & Rahul Sindhwani & Rajesh Kr. Singh, 2021. "Digitalization priorities of quality control processes for SMEs: a conceptual study in perspective of Industry 4.0 adoption," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1679-1698, August.
    14. Xifan Yao & Nanfeng Ma & Jianming Zhang & Kesai Wang & Erfu Yang & Maurizio Faccio, 2024. "Enhancing wisdom manufacturing as industrial metaverse for industry and society 5.0," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 235-255, January.
    15. Simon Micheler & Yee Mey Goh & Niels Lohse, 2021. "A transformation of human operation approach to inform system design for automation," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 201-220, January.
    16. Chenxi Yuan & Guoyan Li & Sagar Kamarthi & Xiaoning Jin & Mohsen Moghaddam, 2022. "Trends in intelligent manufacturing research: a keyword co-occurrence network based review," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 425-439, February.
    17. Tufail Habib & Muhammad Omair & Muhammad Salman Habib & Muhammad Zeeshan Zahir & Sikandar Bilal Khattak & Se-Jin Yook & Muhammad Aamir & Rehman Akhtar, 2023. "Modular Product Architecture for Sustainable Flexible Manufacturing in Industry 4.0: The Case of 3D Printer and Electric Toothbrush," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    18. Kasper, T.A. Arno & Land, Martin J. & Teunter, Ruud H., 2023. "Towards System State Dispatching in High‐Variety Manufacturing," Omega, Elsevier, vol. 114(C).
    19. Vasja Roblek & Maja Meško & Mirjana Pejić Bach & Oshane Thorpe & Polona Šprajc, 2020. "The Interaction between Internet, Sustainable Development, and Emergence of Society 5.0," Data, MDPI, vol. 5(3), pages 1-27, September.
    20. Palash Saha & Subrata Talapatra & H. M. Belal & Victoria Jackson, 2022. "Unleashing the Potential of the TQM and Industry 4.0 to Achieve Sustainability Performance in the Context of a Developing Country," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(4), pages 495-513, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:5:d:10.1007_s10845-022-01925-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.