IDEAS home Printed from
   My bibliography  Save this article

Consistent and covariant solutions for TU games


  • Elena Yanovskaya



One of the important properties characterizing cooperative game solutions is consistency. This notion establishes connections between the solution vectors of a cooperative game and those of its reduced game. The last one is obtained from the initial game by removing one or more players and by giving them the payoffs according to a specific principle (e.g. a proposed payoff vector). Consistency of a solution means that the restriction of a solution payoff vector of the initial game to any coalition belongs to the solution set of the corresponding reduced game. There are several definitions of the reduced games (cf., e.g., the survey of T. Driessen [2]) based on some intuitively acceptable characteristics. In the paper some natural properties of reduced games are formulated, and general forms of the reduced games possessing some of them are given. The efficient, anonymous, covariant TU cooperative game solutions satisfying the consistency property with respect to any reduced game are described. Copyright Springer-Verlag 2004

Suggested Citation

  • Elena Yanovskaya, 2004. "Consistent and covariant solutions for TU games," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(4), pages 485-500, August.
  • Handle: RePEc:spr:jogath:v:32:y:2004:i:4:p:485-500
    DOI: 10.1007/s001820400172

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. David PĂ©rez-Castrillo & Chaoran Sun, 2020. "Value-Free Reductions," Working Papers 1186, Barcelona Graduate School of Economics.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:32:y:2004:i:4:p:485-500. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.