IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v92y2025i3d10.1007_s10898-025-01499-0.html
   My bibliography  Save this article

Convexifiable quadratic inequality systems: new minimax S-lemma and exact SOCPs for classes of distributionally robust optimization problems

Author

Listed:
  • Q. Y. Huang

    (University of New South Wales)

  • V. Jeyakumar

    (University of New South Wales)

  • G. Li

    (University of New South Wales)

  • D. T. K. Huyen

    (University of New South Wales
    Phenikaa University)

Abstract

This paper introduces a generalization of the powerful S-lemma, extending it to minimax quadratic functions for the first time. Notably, the convexity of the involved functions is not assumed; instead, our approach leverages the convexifiability of the associated quadratic systems. It provides various verifiable conditions to identify this convexifiability by exploiting the system’s separability. Using the new minimax S-lemma and the simultaneous diagonalization property, the paper presents exact second-order cone program reformulations for classes of distributionally robust optimization problems involving minimax quadratic functions, ensuring that they share the same optimal value and can efficiently be solved. Finally, it also provides numerical validations of our results for concrete models of insurance risk assessment, maximum revenue estimation, and option pricing under distributional uncertainty.

Suggested Citation

  • Q. Y. Huang & V. Jeyakumar & G. Li & D. T. K. Huyen, 2025. "Convexifiable quadratic inequality systems: new minimax S-lemma and exact SOCPs for classes of distributionally robust optimization problems," Journal of Global Optimization, Springer, vol. 92(3), pages 535-568, July.
  • Handle: RePEc:spr:jglopt:v:92:y:2025:i:3:d:10.1007_s10898-025-01499-0
    DOI: 10.1007/s10898-025-01499-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-025-01499-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-025-01499-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. N. Dinh & V. Jeyakumar, 2014. "Rejoinder on: Farkas’ lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 41-44, April.
    2. N. Dinh & V. Jeyakumar, 2014. "Farkas’ lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 1-22, April.
    3. Ioana Popescu, 2005. "A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 632-657, August.
    4. Dimitris Bertsimas & Ioana Popescu, 2002. "On the Relation Between Option and Stock Prices: A Convex Optimization Approach," Operations Research, INFORMS, vol. 50(2), pages 358-374, April.
    5. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    6. B. T. Polyak, 1998. "Convexity of Quadratic Transformations and Its Use in Control and Optimization," Journal of Optimization Theory and Applications, Springer, vol. 99(3), pages 553-583, December.
    7. Chieu, N.H. & Jeyakumar, V. & Li, G., 2020. "Convexifiability of continuous and discrete nonnegative quadratic programs for gap-free duality," European Journal of Operational Research, Elsevier, vol. 280(2), pages 441-452.
    8. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    2. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    3. Liu, Yongchao & Xu, Huifu & Yang, Shu-Jung Sunny & Zhang, Jin, 2018. "Distributionally robust equilibrium for continuous games: Nash and Stackelberg models," European Journal of Operational Research, Elsevier, vol. 265(2), pages 631-643.
    4. Yongchao Liu & Alois Pichler & Huifu Xu, 2019. "Discrete Approximation and Quantification in Distributionally Robust Optimization," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 19-37, February.
    5. Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.
    6. Meijia Yang & Shu Wang & Yong Xia, 2022. "Toward Nonquadratic S-Lemma: New Theory and Application in Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 353-363, July.
    7. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    8. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    9. Viet Anh Nguyen & Soroosh Shafiee & Damir Filipovi'c & Daniel Kuhn, 2021. "Mean-Covariance Robust Risk Measurement," Papers 2112.09959, arXiv.org, revised Oct 2025.
    10. Karthik Natarajan & Melvyn Sim & Joline Uichanco, 2018. "Asymmetry and Ambiguity in Newsvendor Models," Management Science, INFORMS, vol. 64(7), pages 3146-3167, July.
    11. Feng Liu & Zhi Chen & Shuming Wang, 2023. "Globalized Distributionally Robust Counterpart," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1120-1142, September.
    12. Zhi Chen & Weijun Xie, 2021. "Regret in the Newsvendor Model with Demand and Yield Randomness," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4176-4197, November.
    13. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    14. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    15. Xiaojiao Tong & Hailin Sun & Xiao Luo & Quanguo Zheng, 2018. "Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems," Journal of Global Optimization, Springer, vol. 70(1), pages 131-158, January.
    16. Dey, Shibshankar & Kim, Cheolmin & Mehrotra, Sanjay, 2024. "An algorithm for stochastic convex-concave fractional programs with applications to production efficiency and equitable resource allocation," European Journal of Operational Research, Elsevier, vol. 315(3), pages 980-990.
    17. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    18. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    19. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    20. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:92:y:2025:i:3:d:10.1007_s10898-025-01499-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.