Inexact proximal methods for weakly convex functions
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-024-01460-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lorenzo Stella & Andreas Themelis & Panagiotis Patrinos, 2017. "Forward–backward quasi-Newton methods for nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 443-487, July.
- NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pham Duy Khanh & Boris S. Mordukhovich & Vo Thanh Phat & Dat Ba Tran, 2023. "Generalized damped Newton algorithms in nonsmooth optimization via second-order subdifferentials," Journal of Global Optimization, Springer, vol. 86(1), pages 93-122, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Christian Kanzow & Theresa Lechner, 2021. "Globalized inexact proximal Newton-type methods for nonconvex composite functions," Computational Optimization and Applications, Springer, vol. 78(2), pages 377-410, March.
- Aviad Aberdam & Amir Beck, 2022. "An Accelerated Coordinate Gradient Descent Algorithm for Non-separable Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 219-246, June.
- Kaiwen Ma & Nikolaos V. Sahinidis & Sreekanth Rajagopalan & Satyajith Amaran & Scott J Bury, 2021. "Decomposition in derivative-free optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 269-292, October.
- Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
- A. Scagliotti & P. Colli Franzone, 2022. "A piecewise conservative method for unconstrained convex optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 251-288, January.
- Ren Jiang & Zhifeng Ji & Wuling Mo & Suhua Wang & Mingjun Zhang & Wei Yin & Zhen Wang & Yaping Lin & Xueke Wang & Umar Ashraf, 2022. "A Novel Method of Deep Learning for Shear Velocity Prediction in a Tight Sandstone Reservoir," Energies, MDPI, vol. 15(19), pages 1-20, September.
- Silvia Bonettini & Peter Ochs & Marco Prato & Simone Rebegoldi, 2023. "An abstract convergence framework with application to inertial inexact forward–backward methods," Computational Optimization and Applications, Springer, vol. 84(2), pages 319-362, March.
- Qingyang Liu & Yuping Zhang, 2023. "Integrative Structural Learning of Mixed Graphical Models via Pseudo-likelihood," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(3), pages 562-582, December.
- Yassine Nabou & Ion Necoara, 2024. "Efficiency of higher-order algorithms for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 87(2), pages 441-473, March.
- Puya Latafat & Andreas Themelis & Silvia Villa & Panagiotis Patrinos, 2025. "On the Convergence of Proximal Gradient Methods for Convex Simple Bilevel Optimization," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-36, March.
- Kai Gong & Liwei Zhang, 2024. "Primal-Dual Algorithm for Distributed Optimization with Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 252-279, April.
- Zhaosong Lu & Xiaojun Chen, 2018. "Generalized Conjugate Gradient Methods for ℓ 1 Regularized Convex Quadratic Programming with Finite Convergence," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 275-303, February.
- Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
- TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016.
"Exact worst-case performance of first-order methods for composite convex optimization,"
LIDAM Discussion Papers CORE
2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Adrien B. TAYLOR & Julien M. HENDRICKX & François GLINEUR, 2017. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Reprints CORE 2875, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Paul-Emile Maingé & André Weng-Law, 2024. "Accelerated forward–backward algorithms for structured monotone inclusions," Computational Optimization and Applications, Springer, vol. 88(1), pages 167-215, May.
- Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
- Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
- Pontus Giselsson & Mattias Fält, 2018. "Envelope Functions: Unifications and Further Properties," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 673-698, September.
- Peter Ochs, 2018. "Local Convergence of the Heavy-Ball Method and iPiano for Non-convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 153-180, April.
- Dewei Zhang & Yin Liu & Sam Davanloo Tajbakhsh, 2022. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1126-1140, March.
More about this item
Keywords
Inexact proximal methods; Weakly convex functions; Forward-backward envelopes; Kurdyka–Łojasiewicz property; Global convergence; Linear convergence rates; Proximal points;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:3:d:10.1007_s10898-024-01460-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.