IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i4d10.1007_s10898-024-01378-0.html
   My bibliography  Save this article

Convergence and worst-case complexity of adaptive Riemannian trust-region methods for optimization on manifolds

Author

Listed:
  • Zhou Sheng

    (Anhui University of Technology
    Anhui Provincial Joint Key Laboratory of Disciplines for Industrial Big Data Analysis and Intelligent Decision)

  • Gonglin Yuan

    (Guangxi University)

Abstract

Trust-region methods have received massive attention in a variety of continuous optimization. They aim to obtain a trial step by minimizing a quadratic model in a region of a certain trust-region radius around the current iterate. This paper proposes an adaptive Riemannian trust-region algorithm for optimization on manifolds, in which the trust-region radius depends linearly on the norm of the Riemannian gradient at each iteration. Under mild assumptions, we establish the liminf-type convergence, lim-type convergence, and global convergence results of the proposed algorithm. In addition, the proposed algorithm is shown to reach the conclusion that the norm of the Riemannian gradient is smaller than $$\epsilon $$ ϵ within $${\mathcal {O}}(\frac{1}{\epsilon ^2})$$ O ( 1 ϵ 2 ) iterations. Some numerical examples of tensor approximations are carried out to reveal the performances of the proposed algorithm compared to the classical Riemannian trust-region algorithm.

Suggested Citation

  • Zhou Sheng & Gonglin Yuan, 2024. "Convergence and worst-case complexity of adaptive Riemannian trust-region methods for optimization on manifolds," Journal of Global Optimization, Springer, vol. 89(4), pages 949-974, August.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:4:d:10.1007_s10898-024-01378-0
    DOI: 10.1007/s10898-024-01378-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01378-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01378-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaojing Zhu, 2017. "A Riemannian conjugate gradient method for optimization on the Stiefel manifold," Computational Optimization and Applications, Springer, vol. 67(1), pages 73-110, May.
    2. Marcio Antônio de A. Bortoloti & Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2020. "Damped Newton’s method on Riemannian manifolds," Journal of Global Optimization, Springer, vol. 77(3), pages 643-660, July.
    3. Shenglong Hu, 2020. "An inexact augmented Lagrangian method for computing strongly orthogonal decompositions of tensors," Computational Optimization and Applications, Springer, vol. 75(3), pages 701-737, April.
    4. Shi, Zhenjun & Wang, Shengquan, 2011. "Nonmonotone adaptive trust region method," European Journal of Operational Research, Elsevier, vol. 208(1), pages 28-36, January.
    5. Zhou Sheng & Gonglin Yuan, 2018. "An effective adaptive trust region algorithm for nonsmooth minimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 251-271, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    2. Chen, Kangming & Fukuda, Ellen Hidemi & Sato, Hiroyuki, 2025. "Nonlinear conjugate gradient method for vector optimization on Riemannian manifolds with retraction and vector transport," Applied Mathematics and Computation, Elsevier, vol. 486(C).
    3. Jianjun Liu & Xiangmin Xu & Xuehui Cui, 2018. "An accelerated nonmonotone trust region method with adaptive trust region for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 69(1), pages 77-97, January.
    4. Zhijian Lai & Akiko Yoshise, 2024. "Riemannian Interior Point Methods for Constrained Optimization on Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 433-469, April.
    5. Xiaojing Zhu & Chungen Shen, 2024. "Practical gradient and conjugate gradient methods on flag manifolds," Computational Optimization and Applications, Springer, vol. 88(2), pages 491-524, June.
    6. Harry Oviedo, 2023. "Proximal Point Algorithm with Euclidean Distance on the Stiefel Manifold," Mathematics, MDPI, vol. 11(11), pages 1-17, May.
    7. Lei Wang & Xin Liu & Yin Zhang, 2023. "A communication-efficient and privacy-aware distributed algorithm for sparse PCA," Computational Optimization and Applications, Springer, vol. 85(3), pages 1033-1072, July.
    8. Hiroyuki Sakai & Hideaki Iiduka, 2021. "Sufficient Descent Riemannian Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 130-150, July.
    9. Zhou Sheng & Gonglin Yuan, 2018. "An effective adaptive trust region algorithm for nonsmooth minimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 251-271, September.
    10. Ke Wang & Zhuo Chen & Shihui Ying & Xinjian Xu, 2023. "Low-Rank Matrix Completion via QR-Based Retraction on Manifolds," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
    11. Fabiana R. Oliveira & Fabrícia R. Oliveira, 2021. "A Global Newton Method for the Nonsmooth Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 259-273, July.
    12. Shang, Jun & Ye, Haishan & Chang, Xiangyu, 2024. "Accelerated Double-Sketching Subspace Newton," European Journal of Operational Research, Elsevier, vol. 319(2), pages 484-493.
    13. Mingming Xu & Quanxin Zhu & Hongying Xiao, 2024. "An Improved Non-Monotonic Adaptive Trust Region Algorithm for Unconstrained Optimization," Mathematics, MDPI, vol. 12(21), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:4:d:10.1007_s10898-024-01378-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.